Generation of Oxozirconocene Complexes from the Reaction of Cp_{2} (THF) $\mathrm{Zr}=\mathrm{N}-t-\mathrm{Bu}$ with Organic and Metal Carbonyl Functionalities: Apparently Divergent Behavior of Transient $\left[\mathrm{Cp}_{2} \mathrm{Zr}=\mathrm{O}\right.$]

Sun Yeoul Lee and Robert G. Bergman*
Contribution from the Department of Chemistry, University of California, Berkeley, Calfornia 94720

Received December 4, 1995^{\otimes}

Abstract

The reactivity of $\mathrm{Cp}_{2}(\mathrm{THF}) \mathrm{Zr}=\mathrm{N}-t-\mathrm{Bu}$ (1a) toward a series of organic and metal carbonyl complexes has been examined. The $\mathrm{Zr}=\mathrm{N}$ linkage of $\mathbf{1 a}$ undergoes imido/oxo exchange reactions with the carbonyl compounds and generates three different types of oxozirconocene products: $\left(\mathrm{Cp}_{2} \mathrm{Zr}=\mathrm{O}\right)_{n}(\mathbf{3}),\left(\mathrm{Cp}_{2} \mathrm{Zr}\right)_{2}(\mu-\mathrm{O})(\mu-\mathrm{N}-t-\mathrm{Bu})(\mathbf{9})$, and $\left(\mathrm{Cp}_{2} \mathrm{Zr}_{2}\right)_{2} \mathrm{O}_{3} \mathrm{CCPh}_{2}(\mathbf{1 2})$ were obtained from the reactions of $\mathbf{1 a}$ with $\mathrm{RR}^{\prime} \mathrm{C}=\mathrm{O}\left(\mathrm{R}=\mathrm{R}^{\prime}=\mathrm{Me}(\mathbf{2 b}) ; \mathrm{R}=\mathrm{Ph}, \mathrm{R}^{\prime}=\mathrm{H}\right.$ (2c); $\mathrm{R}=i-\mathrm{Pr}, \mathrm{R}^{\prime}=\mathrm{H}(\mathbf{2 d})$), $\mathrm{CpCo}(\mathrm{CO})_{2}(\mathbf{7})$, and $\mathrm{Ph}_{2} \mathrm{C}=\mathrm{C}=\mathrm{O}(\mathbf{1 0})$, respectively. The coproducts in these reactions were imines $\mathrm{RR}^{\prime} \mathrm{C}=\mathrm{N}-t-\mathrm{Bu}(\mathbf{4 b}-\mathbf{d})$, isonitrile complexes $\mathrm{CpCo}(\mathrm{CO})(\mathrm{CN}-t-\mathrm{Bu})(\mathbf{8 a})$, and ketenimines $\mathrm{Ph}_{2} \mathrm{C}=\mathrm{C}=\mathrm{N}-$ t-Bu (11a), respectively. With more highly hindered carbonyls containing α-hydrogen atoms, the reaction followed a different pathway leading to the formation of the enolate complexes $\mathrm{Cp}_{2} \mathrm{Zr}(\mathrm{NH}-t-\mathrm{Bu})\left(\mathrm{OCR}_{3} \mathrm{CR}_{2} \mathrm{R}_{1}\right)\left(\mathrm{R}_{1}=\mathrm{H}, \mathrm{R}_{2}\right.$ and $\left.\mathrm{R}_{3}=\left(\mathrm{CH}_{2}\right)_{3} \mathrm{CH}\left(\mathrm{CCH}_{3}\right)_{3}(\mathbf{5 e}) ; \mathrm{R}_{1}=\mathrm{R}_{2}=\mathrm{H}, \mathrm{R}_{3}=\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}(\mathbf{5 f}) ; \mathrm{R}_{1}=\mathrm{R}_{2}=\mathrm{CH}_{3}, \mathrm{R}_{3}=\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}(\mathbf{5 g})\right)$. Possible mechanisms for these transformations, as well as the factors that might control the dependence of the fate of " $\mathrm{Cp}_{2} \mathrm{Zr}=\mathrm{O}$ " on its method of generation, are discussed.

Introduction

The chemistry of complexes containing metal-nitrogen multiply-bonded groups ($\mathrm{M}=\mathrm{NR}_{2}$) has developed dramatically in recent years. ${ }^{1}$ These compounds are useful for imido group transfer in catalytic processes ${ }^{2-5}$ as well as in organic synthesis. ${ }^{6-8}$ Furthermore, the exchange of multiply-bonded ligands between metals offers a potentially useful synthetic approach to new transition metal compounds. ${ }^{9}$

An earlier publication from our group briefly reported that the monomeric imido complex Cp_{2} (THF) $\mathrm{Zr}=\mathrm{N}-t-\mathrm{Bu} \quad$ (1a) undergoes a spontaneous imido/oxo exchange reaction with $\mathrm{Ph}_{2} \mathrm{C}=\mathrm{O}(\mathbf{2 a})$ and $t-\mathrm{BuN}=\mathrm{C}=\mathrm{O}$ to generate the oxozirconocene oligomer $\left(\mathrm{Cp}_{2} \mathrm{Zr}=\mathrm{O}\right)_{n}(\mathbf{3})$ and the corresponding imine (4a) and carbodiimide products, respectively. ${ }^{10,11}$ As shown in eq 1 , it was assumed that $\left[\mathrm{Cp}_{2} \mathrm{Zr}=\mathrm{O}\right]$ is generated during the reaction and rapidly oligomerizes to form 3. Monomeric group 4

[^0]oxometallocenes are notorious for their self-oligomerization and have eluded successful trapping except for a few examples containing the sterically bulky ($\eta^{5}-\mathrm{C}_{5} \mathrm{Me}_{5}$) ligand (e.g. $\left.\left[\mathrm{Cp}^{*}{ }_{2} \mathrm{M}=\mathrm{O}\right](\mathrm{M}=\mathrm{Zr}, \mathrm{V})\right) .{ }^{12-16}$ In this paper we report additional studies that indicate that the behavior of the transient " $\mathrm{Cp}_{2} \mathrm{Zr}=\mathrm{O}$ " species generated during these reactions depends on the character of the oxygen source.

Results

Reactions with Organic Carbonyl Compounds. The carbonyl compounds (ketones and aldehydes) shown in Scheme 1 are divided into three groups (A, B, and C) based on their steric encumbrance. Group A includes aldehydes and simple ketones $(\mathbf{2 b} \mathbf{- d})$. In group B are illustrated moderately sterically hindered ketones containing either one bulky group (2 e and $\mathbf{2 f}$) or two secondary alkyl groups (2g). Ketones in groups A and B possess α-protons. The type C compound illustrated is a sterically encumbered ketone without α-hydrogens (2h).

As with 2a, the reaction of the carbonyl compounds in group A ($\mathbf{2} \mathbf{b}-\mathbf{d}$) with 1a generates the corresponding imine products $(\mathbf{4 b}-\mathbf{d})$ and $\mathbf{3}$ as shown eq 2 . These reactions occur spontaneously at room temperature and quantitative amounts ($>90 \%$ by ${ }^{1} \mathrm{H}$ NMR) of the corresponding imine products were cleanly produced. However, the $\left(\mathrm{Cp}_{2} \mathrm{Zr}=\mathrm{O}\right)_{n}(\mathbf{3})$ produced is generated as several different oligomers (based on several Cp resonances around 6 ppm) that fall out of solution as a white precipitate. Among those Cp resonances, the peak at 6.31 ppm in THF- d_{8} (or 6.27 ppm in $\mathrm{C}_{6} \mathrm{D}_{6}$) was always observed as a major

[^1]
Scheme 1

component. This matches the chemical shift of the known cyclotrimeric compound $\left(\mathrm{Cp}_{2} \mathrm{Zr}=\mathrm{O}\right)_{3} \cdot{ }^{17-20}$ No further attempt

(b) $\mathrm{R}=\mathrm{Me}, \mathrm{R}^{\prime}=\mathrm{Me}$
(c) $\mathrm{R}=\mathrm{Ph}, \mathrm{R}^{\prime}=\mathrm{H}$
(d) $\mathrm{R}=i-\mathrm{Pr}, \mathrm{R}^{\prime}=\mathrm{H}$
to characterize 3 was made, but the imine products were identified by GCMS and by comparison with literature spectral data. ${ }^{21,22}$ The identity of one of the imine products $(\mathrm{PhCH}=\mathrm{N}$ t - $\mathrm{Bu}(\mathbf{4 c})$) was also confirmed by independent preparation. ${ }^{23}$

The reactions of $\mathbf{1 a}$ with compounds $\mathbf{2 e}-\mathbf{g}$ in the group B also occur cleanly at $25^{\circ} \mathrm{C}$ in $>95 \%$ yield (by ${ }^{1} \mathrm{H}$ NMR), but do not generate the imine products or 3. Instead, the zirconocene enolate complexes $\mathbf{5 e}-\mathbf{g}$ are formed by α-hydrogen abstraction (eq 3). The enolate complexes were isolated in

(e) $\mathrm{R}_{1}=\mathrm{H}, \mathrm{R}_{2}$ and $\mathrm{R}_{3}=\left(\mathrm{CH}_{2}\right)_{3} \mathrm{CH}\left(\mathrm{CCH}_{3}\right)_{3}$
(f) $\mathrm{R}_{1}=\mathrm{R}_{2}=\mathrm{H}, \mathrm{R}_{3}=\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}$
(g) $\mathrm{R}_{1}=\mathrm{R}_{2}=\mathrm{CH}_{3}, \mathrm{R}_{3}=\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}$
analytically pure form by recrystallization from pentane (or $\mathrm{TMS}_{2} \mathrm{O}$) at $-35{ }^{\circ} \mathrm{C}$ in $60-75 \%$ isolated yields. The ${ }^{1} \mathrm{H}$ NMR spectra of these enolates generally contain resonances near 6

[^2]ppm $(10 \mathrm{H})$ attributable to the cyclopentadienyl groups, a broad singlet in the region $4-5 \mathrm{ppm}(1 \mathrm{H})$ due to the alkylamido hydrogen, and a singlet near 1.2 ppm due to the tert-butylamido group. In addition to these resonances, enolates $\mathbf{5 e}$ and $\mathbf{5 f}$ (when R_{1} or $\mathrm{R}_{2}=\mathrm{H}$) exhibit new vinyl protons at 4.52 ppm (for $\mathbf{5 e}$) and 3.78 and 3.47 ppm (for $\mathbf{5 f} ; \mathrm{C}_{6} \mathrm{D}_{6}$). The ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra of $\mathbf{5 e}-\mathbf{g}$ show a resonance near $160-180 \mathrm{ppm}$ due to the α-carbon and a resonance in the $80-110 \mathrm{ppm}$ region attributable to the β-vinyl carbon.

In contrast to the carbonyl compounds in groups A and B, which react easily with imido complex 1a at the ambient temperature, 2,2,4,4-tetramethyl-3-pentanone ($\mathbf{2 h}$) is inert to $\mathbf{1 a}$ up to $75{ }^{\circ} \mathrm{C}$ for 1.5 days, presumably due to the steric inaccessibility of the carbonyl moiety. Harsher conditions led to decomposition of the starting material.

Crystal and Molecular Structure of 5e. Transition metal enolates have been shown to bind to metal centers in an η^{1} mode through the oxygen atom ${ }^{15,24-29}$ or methylene group, ${ }^{30}$ or in an η^{3}-(oxo- π-allyl) mode. ${ }^{31-33}$ Typically, early transition metal enolates exist in the O-bound form while late metal enolates are C-bound (a few cases of late transition metal O-bound enolates are known). ${ }^{34-38}$ To confirm the structure of our enolate complexes, clear crystals of $\mathbf{5 e}$ were grown in pentane at $-35^{\circ} \mathrm{C}$ and an X-ray crystallographic analysis was performed. The data collection parameters are reported in Table 1. Solution of the structure revealed complete disorder of the enolate ligand about a pseudo-mirror plane containing the O and C 16 -atoms as shown in Figure 1. The disorder was best modeled as having $82: 18$ occupancy of two conformations, the major one containing $\mathrm{C} 11-\mathrm{C} 20$ and the minor one containing C211-C220 (see the supporting information). The major conformation also showed another type of disorder in the enolate ring. This second disorder was fit to a 50:50 occupancy of C14 in two sites. The ORTEP diagram of one of the major conformations of $\mathbf{5 e}$ is shown in Figure 2. Although bond distances and angles shown Tables 2 and 3 are less reliable than they might otherwise be due to the disorder, it is clear that the enolate fragment is bound to zirconium through oxygen ($\mathrm{Zr}-$ O: $1.998(3) \AA \AA^{15,24-26}$ in an η^{1}-mode and the double bond is localized between C 11 and C 12 (1.334(7) \AA). The $\mathrm{Zr}-\mathrm{N}-$ C21 bond angle of $142.5(3)^{\circ}$ in $\mathbf{5 e}$ is bent more strongly than that in the analogous amido complexes, $\mathrm{Cp}_{2} \mathrm{Zr}\left(\mathrm{C}_{6} \mathrm{H}_{3} \mathrm{Cl}_{2}\right)(\mathrm{NH}-$ t-Bu) $\left(147.6(2)^{\circ}\right)^{39}$ and $\mathrm{Cp}_{2} \mathrm{Zr}\left(1-\mathrm{C}_{9} \mathrm{H}_{7}\right)(\mathrm{NH}-t-\mathrm{Bu})\left(c a .147 .7^{\circ}\right) .{ }^{39,40}$
(24) Veya, P.; Floriani, C.; Chiesi-Villa, A.; Guastini, C. Organometallics 1991, 10, 2991.
(25) Curtis, M. D.; Thanedar, S.; Butler, W. M. Organometallics 1984, 3, 1855.
(26) Manriquez, J. M.; McAlister, D. R.; Sanner, R. D.; Bercaw, J. E. J. Am. Soc. Chem. 1978, 100, 2716.
(27) Sonnenberger, D. C.; Mintz, E. A.; Marks, T. J. J. Am. Chem. Soc. 1984, 106, 3484.
(28) Stille, J. R.; Grubbs, R. H. J. Am. Chem. Soc. 1983, 105, 1664.
(29) de With, J.; Horton, A. D. Angew. Chem., Int. Ed. Engl. 1993, 32, 903.
(30) Burkhardt, E. R.; Doney, J. J.; Bergman, R. G.; Heathcock, C. H. J. Am. Chem. Soc. 1987, 109, 2022 and references therein.
(31) Ito, Y.; Aoyama, H.; Hirao, T.; Mochizuki, A.; Saegusa, T. J. Am. Chem. Soc. 1979, 101, 494.
(32) Guggolz, E.; Ziegler, M. L. J. Organomet. Chem. 1980, 194, 317.
(33) Robertson, G. B.; Whimp, P. O. Inorg. Chem. 1973, 12, 1740.
(34) Slough, G. A.; Bergman, R. G.; Heathcock, C. H. J. Am. Chem. Soc. 1989, 111, 938.
(35) Hartwig, J. F.; Andersen, R. A.; Bergman, R. G. J. Am. Chem. Soc. 1990, 112, 5670.
(36) Hartwig, J. F.; Bergman, R. G.; Andersen, R. A. J. Am. Chem. Soc. 1990, 112, 3234.
(37) Dall'antonia, P.; Graziani, M. J. Organomet. Chem. 1980, 186, 131.
(38) Ito, Y.; Nakatsuka, M.; Kise, N.; Saegusa, T. Tetrahedron Lett. 1980, 21, 2873.
(39) Lee, S. Y.; Bergman, R. G. J. Am. Chem. Soc. 1995, 117, 5877.
(40) Lee, S. Y.; Bergman, R. G. Mauscript in preparation.

Table 1. Crystal and Data Parameters for Complexes 5e and 12

compd nos.	5e	$\mathbf{1 2}$
empirical formula	$\mathrm{C}_{24} \mathrm{H}_{36} \mathrm{NOZr}$	$\mathrm{C}_{72} \mathrm{H}_{68} \mathrm{O}_{7} \mathrm{Zr}_{4}{ }^{a}$
formula wt (amu)	445.77	1410.2
crystal dimens (mm)	$0.20 \times 0.25 \times 0.30$	$0.12 \times 0.20 \times 0.38$
$a(\AA)$	$9.4933(2)$	$16.621(4)$
$b(\AA)$	$8.0068(2)$	$18.763(3)$
$c(\AA)$	$30.6878(9)$	$19.417(5)$
$\alpha(\mathrm{deg})$	90	90
$\beta(\mathrm{deg})$	$91.643(1)$	90
$\gamma($ deg $)$	90	90
$V\left(\AA^{3}\right)$	$2331.65(9)$	$6055.7(39)$
space group	$P 2_{1} / n$	$P b c a$
Z	4	4
diffractometer	Siemens SMART	CAD 4
detector	CCD area detector	crystal scintillation
		counter, with PHA
temp $\left({ }^{\circ} \mathrm{C}\right)$	-130	-130
scan type	ω	$\theta-2 \theta$
scan width (deg)	0.3	$0.90+0.35$ tan θ
2θ range	$3-46.5$	$3-45$
no. of unique reflcns	3600	2578
$T_{\text {min }} / T_{\text {max }}$	0.931	0.936
no. of variables	270	179
$R ; R_{\mathrm{w}}$	$0.041 ; 0.058$	$0.059 ; 0.069$
$R_{\text {all }}$	$\mathrm{R}_{\text {int }}=0.034$	0.092
goodness of fit	2.46	2.24

${ }^{a}$ Represents two dimers and one THF molecule of solvation.

Figure 1. ORTEP view of the molecular structure of 5e showing one of the major conformations in the disordered crystal. The ellipsoids are scaled to represent the 50% probability surface.

Furthermore, the amido ligand is twisted significantly from the $\mathrm{O}-\mathrm{Zr}-\mathrm{N}$ plane. This appears to be due to steric crowding by the enolate ligand in $\mathbf{5 e}$.

Low-Temperature ${ }^{\mathbf{1}} \mathbf{H}$ NMR Study of the Reaction of $\mathbf{1 a}$ with 2 b and 2d. The reaction of 1a with the carbonyl compounds in group A occurs very rapidly even in THF- d_{8} where excess THF significantly inhibits the dissociation of THF from the imido complex. However, the color of the reaction mixture temporarily changes from yellow to red-orange upon the addition of the ketone. The reaction was therefore monitored at $220-263 \mathrm{~K}$ by ${ }^{1} \mathrm{H}$ NMR spectrometry in THF- d_{8}. This revealed that an intermediate is first generated and then slowly converted (above 243 K) to the corresponding imine $\mathbf{4 b}$ (or $\mathbf{4 d}$) and $\mathbf{3}$. From the reaction of $\mathbf{1 a}$ with $\mathbf{2 b}$, the new intermediate ($\mathbf{6 b}$) gives rise to resonances at $\delta 6.28\left(\mathrm{~s}, 10 \mathrm{H}, \mathrm{C}_{5} H_{5}\right), 1.34$ (s, $\left.6 \mathrm{H},\left(\mathrm{CH}_{3}\right)_{2}\right)$, and $1.22\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right)$. The intermediate (6d)

Figure 2. ORTEP view of one conformation of $\mathbf{5 e}$. The ellipsoids are scaled to represent the 50% probability surface.

Table 2. Selected Bond Distances (\AA) for 5e

Major Conformation		Minor Conformation	
Zr1-O1	1.998(3)		
Zr 1 - Nl	2.060(3)		
Zr1-Cp1	$2.2534(4)$		
$\mathrm{Zr} 1-\mathrm{Cp} 2$	$2.3562(4)$		
$\mathrm{N} 1-\mathrm{C} 21$	1.499 (5)		
O1-C11	1.321(5)	O1-C211	1.36(3)
C11-C12	$1.334(7)$	C211-C212	1.30(4)
C11-C16	$1.524(6)$	C211-C16	1.46(3)
C12-C13	$1.495(8)$	C212-C213	1.73(4)
C13-C14	1.48(1)	C213-C214	1.86(4)
C14-C15	1.48(2)	C214-C215	1.27(4)
C15-C16	$1.523(8)$	C215-C16	1.69(4)
C16-C17	$1.542(7)$	C16-C217	1.63(3)
C17-C18	1.497(8)	C217-C218	1.53(4)
C17-C19	$1.500(9)$	C217-C219	1.68(5)
C17-C20	1.543 (9)	C217-C220	1.49(4)
C13-C141	1.46(2)		
C141-C15	1.37(2)		

Table 3. Selected Bond Angles (deg) for 5e

Major Conformation		Minor Conformation	
$\mathrm{O} 1-\mathrm{Zr} 1-\mathrm{N} 1$	99.9(1)		
$\mathrm{O} 1-\mathrm{Zr1}-\mathrm{C} 10$	80.4(2)		
$\mathrm{O} 1-\mathrm{Zr} 1-\mathrm{Cp} 1$	107.56(8)		
$\mathrm{O} 1-\mathrm{Zr} 1-\mathrm{Cp} 2$	106.05(8)		
N1-Zr1-Cp1	102.73(10)		
$\mathrm{N} 1-\mathrm{Zr} 1-\mathrm{Cp} 2$	108.3(1)		
$\mathrm{Cp} 1-\mathrm{Zr} 1-\mathrm{Cp} 2$	128.76(2)		
Zr1-N1-C21	142.5(3)		
$\mathrm{Zr1}-\mathrm{O} 1-\mathrm{C} 11$	148.0(3)	Zr1-O1-C211	150(1)
O1-C11-C12	122.7(5)	O1-C211-C212	116(2)
O1-C11-C16	114.7(4)	O1-C211-C16	116(2)
C12-C11-C16	122.6(5)	C212-C211-C16	126(2)
C11-C12-C13	124.2(5)	C211-C212-C213	123(2)
C12-C13-C14	110.6(7)	C212-C213-C214	103(1)
C13-C14-C15	110.2(9)	C213-C214-C215	101(2)
C14-C15-C16	123.1(8)		
C11-C16-C17	115.0(4)	C211-C16-C217	112(1)
C15-C16-C17	117.0(5)	C215-C16-C217	112(1)
C16-C17-C19	113.0(5)	C16-C217-C219	108(2)
C16-C17-C20	110.4(5)	C16-C217-C220	107(2)
C18-C17-C19	106.1(6)	C218-C217-C219	98(2)
C18-C17-C20	109.4(6)	C218-C217-C220	139(2)
C19-C17-C20	107.1(5)	C219-C217-C220	84(2)
$\mathrm{Zr} 1-\mathrm{N} 1-\mathrm{H} 11$	132.8		
C21-N1-H11	84.5		
C12-C13-C141	114.5(8)		
C13-C141-C15	118(1)		

generated from the reaction of $\mathbf{2 d}$ shows resonances at $\delta 6.96$ (d, $J=9.28 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}$), 6.30 (br s, $10 \mathrm{H}, \mathrm{C}_{5} H_{5}$; Cp's accidentally degenerate), $2.88\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 1.22(\mathrm{~s}, 9 \mathrm{H}$, $\left.\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right)$, and $0.96\left(\mathrm{~d}, J=9.30 \mathrm{~Hz}, 6 \mathrm{H}, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right)$. From
these data, the intermediates are tentatively assigned as the metallacycles formed by formal $[2+2]$ cycloaddition of $\mathrm{Cp}_{2^{-}}$ $\mathrm{Zr}=\mathrm{N}-t$ - Bu with $\mathbf{2 b}$ (or $\mathbf{2 d}$) as shown below. However, it was unclear at this stage whether they exist in monomeric or dimeric

$$
\begin{aligned}
\text { 6b: } R & =\mathrm{R}^{\prime}=\mathrm{CH}_{3} \\
\text { 6d: } \mathrm{R} & =\mathrm{H}, \mathrm{R}^{\prime}=\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2} \\
\mathrm{n} & =1 \text { or } 2
\end{aligned}
$$

form (vide infra). A second intermediate was also observed in the reaction of $\mathbf{1 a}$ with $\mathbf{2 d}$, but an assignment of its structure was not possible due to the complex nature of the spectrum. There was no indication that either an enolate complex or the dimer complex $\left(\mathrm{Cp}_{2} \mathrm{Zr}\right)_{2}(\mu-\mathrm{O})(\mu-\mathrm{N}-t-\mathrm{Bu})$ are generated during either reaction. In contrast to the observation of metallacycle intermediates ($\mathbf{6 b}$ and $\mathbf{6 d}$) in the reaction of $\mathbf{1 a}$ with $\mathbf{2 b}$ and $\mathbf{2 d}$, no intermediate was observed in the reaction of $\mathbf{1 a}$ with benzophenone (2a) even at 238 K where the reaction proceeds relatively slowly ($t_{1 / 2}=c a .30 \mathrm{~min}$).

Reactions with Metal Complexes Containing CO Groups. A study of the reactivity of 1a toward CO functionalities in metal complexes was also carried out. We reported earlier that treatment of 1a with $\mathrm{CpMn}(\mathrm{CO})_{3}$ or $\mathrm{CpRe}(\mathrm{CO})_{3}$ at $75^{\circ} \mathrm{C}$ in cyclohexane results in the selective activation of the cyclopentadienyl $\mathrm{C}-\mathrm{H}$ bonds of these molecules. ${ }^{39}$ However, when 1a is treated with $\mathrm{CpCo}(\mathrm{CO})_{2}$ (7) in cyclohexane, the reaction instantly gives a complex mixture of products and a precipitate falls out of solution. The ${ }^{1} \mathrm{H}$ NMR spectrum of this precipitate in $\mathrm{C}_{6} \mathrm{D}_{6}$ showed several Cp resonances indicating that the material is a mixture.

When 1a is treated with excess (ca. 3 equiv) $\mathrm{CpCo}(\mathrm{CO})_{2}$ (7) in THF at $75^{\circ} \mathrm{C}$, the reaction mixture remains homogeneous. In this solvent the process appears to be considerably cleaner, and $\mathrm{CpCo}(\mathrm{CO})(\mathrm{CN}-t-\mathrm{Bu})(\mathbf{8 a})^{41,42}$ and a new binuclear complex identified as $\left(\mathrm{Cp}_{2} \mathrm{Zr}\right)_{2}(\mu-\mathrm{O})(\mu-\mathrm{N}-t-\mathrm{Bu})(9)$ are formed in 90% yield (by ${ }^{1} \mathrm{H}$ NMR) (eq 4). Compounds $8 \mathbf{a}$ and $\mathbf{9}$ were separated

based on their solubility in pentane. The pentane-soluble isonitrile compound 8a was isolated in 28% yield and identified by comparison of its spectra with data in the literature. ${ }^{41}$ Pentane-insoluble 9 was crystallized from pentane/benzene in 30% isolated yield. Dimer 9 shows a simple ${ }^{1} \mathrm{H}$ NMR spectrum $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right)$ with two singlets at 6.10 and 1.12 ppm attributable to the cyclopentadienyl $(20 \mathrm{H})$ and tert-butyl $(9 \mathrm{H})$ protons, respectively. To confirm the structure of $\mathbf{9}$, crystals for an X-ray study were grown by slow evaporation of solvent from an ether solution of the complex. Unfortunately, an X-ray crystallographic analysis of $\mathbf{9}$ could not be fully refined due to disorder. However, it allowed us to confirm the basic structure of the metallacycle.

Attempts to confirm the source of the oxygen in 9 were also made. To make sure that the oxygen did not come from the reaction solvent THF, the reaction was carried out with an

[^3]analogue of 1a, $\mathrm{Cp}_{2} \mathrm{Zr}\left(\mathrm{N}-2,6-\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}_{6} \mathrm{H}_{3}\right)(\mathrm{THF})(\mathbf{1 b})$. The fact that this arylimido complex does not react with benzene $\mathrm{C}-\mathrm{H}$ bonds allowed us to carry out the reaction of $\mathbf{1 b}$ with $\mathrm{CpCo}-$ $(\mathrm{CO})_{2}(7)$ in an aromatic rather than an oxygen-containing solvent. The reaction of $\mathbf{1 b}$ with cobalt complex $\mathbf{7}$ at $75^{\circ} \mathrm{C}$ in $\mathrm{C}_{6} \mathrm{H}_{6}$ (as well as THF- d_{8}) leads to the formation of $\mathrm{CpCo}(\mathrm{CO})$ -$\left(\mathrm{CN}-2,6-\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}_{6} \mathrm{H}_{3}\right)^{43}(\mathbf{8 b})\left(46 \%\right.$ isolated) and " $\mathrm{Cp}_{2} \mathrm{Zr}=\mathrm{O}$ oligomer" 3 (eq 5). Although 3 was observed instead of the

analogue of dimer 9 in both solvents, the experiment in $\mathrm{C}_{6} \mathrm{H}_{6}$ clearly demonstrates that THF is not required for the conversion of the starting terminal imido complex into an oxozirconium product. The imido complex 1a also reacts with $86 \%{ }^{13} \mathrm{CO}$ labeled $\mathrm{CpCo}\left({ }^{(33} \mathrm{CO}\right)_{2}$ under the same conditions to give 9 and $\mathrm{CpCo}\left({ }^{13} \mathrm{CO}\right)\left({ }^{13} \mathrm{CN}-t-\mathrm{Bu}\right)\left(\mathbf{8 a -}{ }^{13} \mathbf{C}\right)$ with 84% incorporation of label, as determined by integration of relative mass peaks from EI mass spectroscopy.

Preliminary ${ }^{1} \mathrm{H}$ NMR investigations suggest that the reaction of 1a with $\mathrm{CpV}(\mathrm{CO})_{4}, \mathrm{CpFe}\left(\mathrm{CH}_{3}\right)(\mathrm{CO})_{2}$, and $\left(\mathrm{C}_{6} \mathrm{H}_{6}\right) \mathrm{Cr}(\mathrm{CO})_{3}$ in THF- d_{8} also yields 9 and the corresponding deoxygenated metal carbonyl isocyanide complexes $\mathrm{CpV}(\mathrm{CO})_{3}(\mathrm{CN}-t-\mathrm{Bu}){ }^{44}$ $\mathrm{CpFe}\left(\mathrm{CH}_{3}\right)(\mathrm{CO})(\mathrm{CN}-t-\mathrm{Bu}),{ }^{45}$ or $\left(\mathrm{C}_{6} \mathrm{H}_{6}\right) \mathrm{Cr}(\mathrm{CO})_{2}(\mathrm{CN}-t-\mathrm{Bu}){ }^{46}$ respectively. The rates of the reaction of $\mathbf{1 a}$ with $\mathrm{CpV}(\mathrm{CO})_{4}$ and $\left(\mathrm{C}_{6} \mathrm{H}_{6}\right) \mathrm{Cr}(\mathrm{CO})_{3}$ are relatively fast, and the reactions occur even at $25^{\circ} \mathrm{C}$ over several hours. The reaction of $\mathbf{1 a}$ with the simple metal carbonyl complex $\mathrm{Mo}(\mathrm{CO})_{6}$ in THF- d_{8} at $25^{\circ} \mathrm{C}$ was also examined briefly by ${ }^{1} \mathrm{H}$ NMR spectroscopy. In this case, more than one tert-butyl resonance grows in during the reaction, presumably due to the formation of a mixture of isocyanide complexes $\mathrm{Mo}(\mathrm{CO})_{5-n}(\mathrm{CN}-t-\mathrm{Bu})_{n}$. Dimer 9 was also formed cleanly as expected.

The observation of oxygen abstraction from metal complexes containing carbonyl groups in THF induced us to re-examine the reactions of $\mathrm{CpM}(\mathrm{CO})_{3}(\mathrm{M}=\mathrm{Mn}, \mathrm{Re})$ with $\mathbf{1 a}$ in this solvent rather than cyclohexane. The reaction of $\mathbf{1 a}$ with $\mathrm{CpM}(\mathrm{CO})_{3}$ $(\mathrm{M}=\mathrm{Mn}, \mathrm{Re})$ in THF requires more vigorous reaction conditions ($105{ }^{\circ} \mathrm{C}, 4$ days) than the same reaction in $\mathrm{C}_{6} \mathrm{H}_{12}$ ($75^{\circ} \mathrm{C}, 1.5$ days) since the coordinating ability of THF inhibits the formation of free $\mathrm{Cp}_{2} \mathrm{Zr}=\mathrm{N}-t-\mathrm{Bu}$, significantly decreasing the reaction rate. The reaction in THF still generates the cyclopentadienyl $\mathrm{C}-\mathrm{H}$ activated products ${ }^{39,40}$ as the major species, but somewhat less than 30% of ligand exchange product 9 was also obtained (eq 6). New ${ }^{1} \mathrm{H}$ NMR resonances for tert-

butyl groups were also observed near 1.15 ppm , presumably due to the formation of the corresponding isonitrile complexes
$\mathrm{CpM}(\mathrm{CO})_{2}(\mathrm{CN}-t-\mathrm{Bu})\left(\mathrm{M}=\mathrm{Mn},{ }^{47,48} \mathrm{Re}^{48}\right)$. However, they were not clearly identified due to the complex nature of the spectra.

Reaction of 1a with Diphenylketene (10). The reactivity of $\mathbf{1 a}$ toward a $\mathrm{C}=\mathrm{C}=\mathrm{O}$ functionality was also studied. When the imido complex $\mathbf{1 a}$ is mixed with an excess of $\mathrm{Ph}_{2} \mathrm{C}=\mathrm{C}=\mathrm{O}$ $(\mathbf{1 0})^{49}$ in benzene, it spontaneously reacts with $3 / 2$ equiv of $\mathbf{1 0}$ to form $\mathrm{Ph}_{2} \mathrm{C}=\mathrm{C}=\mathrm{N}-t-\mathrm{Bu}$ (11a) and $1 / 2$ equiv of $\left(\mathrm{Cp}_{2} \mathrm{Zr}_{2} \mathrm{O}_{3}-\right.$ CCPh_{2} (12) (eq 7). In this case no $\left[\mathrm{Cp}_{2} \mathrm{Zr}=\mathrm{O}\right]_{n}$ (3) was

observed. The ketenimine product 11a was isolated as a pale yellow liquid in 70% yield. The existence of the $\mathrm{C}=\mathrm{C}=\mathrm{N}$ bond in 11a is indicated by the NMR resonance of a quaternary carbon at 182.7 ppm in the ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum $\left(\mathrm{C}_{6} \mathrm{D}_{12}\right)$ and the $\mathrm{C}=\mathrm{N}$ stretching at $2014 \mathrm{~cm}^{-1}$ in the IR spectrum (THF).

Tris-oxo complex 12 was also isolated as the hemisolvate [12•0.5 THF] in analytically pure form by recrystallization from THF/pentane at $-35{ }^{\circ} \mathrm{C}$ in 65% isolated yield. Its ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}-$ $\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra establish that $\mathbf{1 2}$ contains cyclopentadienyl and phenyl groups in a $2: 1$ ratio. The infrared spectrum of $\mathbf{1 2}$ shows no ketene $\mathrm{C}=\mathrm{O}$ stretch in the expected $2100 \mathrm{~cm}^{-1}$ region. Mass spectrometry (EI) shows an ion with $m / e 665.7$ which is consistent with the formula shown in eq 7. The structure of $\mathbf{1 2}$ was confirmed by X-ray crystallography. The data collection parameters are reported in Table 1. As shown in Figure 3, the ORTEP diagram of $[\mathbf{1 2 \cdot 0 . 5} \mathrm{THF}]$ clearly demonstrates that the compound contains a 6 -membered ring composed of two molecules of $\left[\mathrm{Cp}_{2} \mathrm{Zr}=\mathrm{O}\right]$ and one molecule of $\mathrm{Ph}_{2} \mathrm{C}=\mathrm{C}=\mathrm{O}(\mathbf{1 0})$. The $\mathrm{C}-\mathrm{O}(c a .1 .36 \AA)$ and $\mathrm{Zr}-\mathrm{O}(c a .2 .00 \AA)$ bond lengths are consistent with single bonds, but $\mathrm{C} 21=\mathrm{C} 22$ (1.365(7) \AA) shows double bond character. The 6 -membered ring is slightly twisted with $c a .50^{\circ}(\mathrm{O}-\mathrm{Zr}-\mathrm{O}-\mathrm{C} 21)$ and $c a .15^{\circ}(\mathrm{O}-\mathrm{Zr}-$ $\mathrm{O}-\mathrm{Zr}$) torsion angles. Relevant bond lengths and bond angles are listed in Table 4. Selected torsion angles are listed in Table 5.

The formation of ketenimine 11a and the tris-oxo complex 12 was not affected by variation of the initial ratio of the ketene $\mathbf{1 0}$ to the imido complex 1a. Even in the reaction of 1a with 0.5 equiv of $\mathbf{1 0}$, products $\mathbf{1 1 a}$ and $\mathbf{1 2}$ are still generated and $c a$. $2 / 3$ of unreacted 1a remains after the completion of the reaction. Changing the solvent to THF retards the reaction (2 days at 25 ${ }^{\circ} \mathrm{C}$ for completion), but the same products are generated without observation of any intermediate. The reaction of $\mathbf{1 a}$ with $\mathbf{1 0}$ in toluene- d_{8} between -30 and $-10^{\circ} \mathrm{C}$ proceeds at a reasonable rate ($t_{1 / 2}=c a .30 \mathrm{~min}$ at $-10^{\circ} \mathrm{C}$) allowing us to monitor the

[^4]

Figure 3. ORTEP view of the molecular structure of 12. The ellipsoids are scaled to represent the 50% probability surface.

Table 4. Selected Intramolecular Distances (\AA) and Angles (deg) for Complex 12

	Bond Distances (A)		
$\mathrm{Zr} 1-\mathrm{Zr} 2$	$3.536(2)$	$\mathrm{Zr} 1-\mathrm{O} 1$	$2.042(8)$
$\mathrm{Zr} 1-\mathrm{O} 3$	$1.983(8)$	$\mathrm{Zr} 2-\mathrm{O} 2$	$2.037(9)$
$\mathrm{Zr} 2-\mathrm{O} 3$	$1.958(7)$	$\mathrm{Zr} 1-\mathrm{Cpl}$	2.245
$\mathrm{Zr} 1-\mathrm{Cp} 2$	2.231	$\mathrm{Zr} 2-\mathrm{Cp} 3$	2.232
$\mathrm{Zr} 2-\mathrm{Cp} 4$	2.257	$\mathrm{C} 21-\mathrm{O} 1$	$1.362(15)$
$\mathrm{C} 21-\mathrm{O} 2$	$1.358(14)$	$\mathrm{C} 21-\mathrm{C} 22$	$1.365(17)$
$\mathrm{C} 22-\mathrm{C} 23$	$1.502(17)$	$\mathrm{C} 22-\mathrm{C} 29$	$1.506(17)$
$\mathrm{Cp1}-\mathrm{Zr} 1-\mathrm{O} 1$	103.8	$\mathrm{Cp} 2-\mathrm{Zr} 1-\mathrm{O} 1$	105.7
$\mathrm{Cp} 1-\mathrm{Zr} 1-\mathrm{O} 3$	109.3	$\mathrm{Cp} 2-\mathrm{Zr} 1-\mathrm{O} 3$	108.8
$\mathrm{Cp} 1-\mathrm{Zr} 1-\mathrm{Cp} 2$	129.47	$\mathrm{O} 1-\mathrm{Zr} 1-\mathrm{O} 3$	$93.5(3)$
$\mathrm{Cp} 3-\mathrm{Zr} 2-\mathrm{O} 2$	106.6	$\mathrm{Cp} 4-\mathrm{Zr} 2-\mathrm{O} 2$	104.9
$\mathrm{Cp} 3-\mathrm{Zr} 2-\mathrm{O} 3$	108.3	$\mathrm{Cp} 4-\mathrm{Zr} 2-\mathrm{O} 3$	108.9
$\mathrm{Cp} 3-\mathrm{Zr} 2-\mathrm{Cp} 4$	128.56	$\mathrm{O} 2-\mathrm{Zr} 2-\mathrm{O} 3$	$94.0(3)$
$\mathrm{Zr} 1-\mathrm{O} 3-\mathrm{Zr} 2$	$127.6(4)$	$\mathrm{Zr} 1-\mathrm{O} 1-\mathrm{C} 21$	$128.2(8)$
$\mathrm{Zr} 2-\mathrm{O} 2-\mathrm{C} 21$	$133.8(9)$	$\mathrm{O} 1-\mathrm{C} 21-\mathrm{O} 2$	$114.5(12)$
$\mathrm{O} 1-\mathrm{C} 21-\mathrm{C} 22$	$125.4(11)$	$\mathrm{O} 2-\mathrm{C} 21-\mathrm{C} 22$	$120.1(12)$
$\mathrm{C} 21-\mathrm{C} 22-\mathrm{C} 23$	$122.5(12)$	$\mathrm{C} 21-\mathrm{C} 22-\mathrm{C} 29$	$118.5(12)$
$\mathrm{C} 23-\mathrm{C} 22-\mathrm{C} 29$	$119.0(12)$		

Table 5. Selected Torsion Angles for Complex 12 in Degrees

atom 1	atom 2	atom 3	atom 4	angle
O 3	Zrl	O 1	C 21	$-55.84(1.07)$
O 1	Zrl	O 3	Zr 2	$15.73(0.59)$
O 3	Zr 2	O 2	C 21	$-44.38(1.02)$
O 2	Zr 2	O 3	Zrl	$13.96(0.57)$
Zrl	O 1	C 21	O 2	$42.54(1.56)$
Zrl	O 1	C 21	C 22	$-136.69(1.13)$
Zr 2	O 2	C 21	O 1	$20.21(1.62)$
Zr 2	O 2	C 21	C 22	$-160.52(0.95)$

reaction by ${ }^{1} \mathrm{H}$ NMR spectroscopy. However, no intermediate is observed at low temperature. Furthermore, product $\mathbf{1 2}$ is thermally very stable. There is no evidence of further reaction, and decomposition to generate $\left[\mathrm{Cp}_{2} \mathrm{Zr}=\mathrm{O}\right]_{n}(\mathbf{3})$ is not observed until $\mathbf{1 2}$ has been held at $105^{\circ} \mathrm{C}$ for 4 days.

Reaction of $\mathbf{1 a}$ with $\mathbf{P h}_{2} \mathbf{C}=\mathbf{C}=$ NTol (11b). To obtain information on a transformation that might be analogous to the reaction of 1a with diphenylketene (and also which might be more amenable to mechanistic scrutiny) we decided to explore the reactivity of $\mathbf{1 a}$ toward a ketenimine. Since $\mathrm{Ph}_{2} \mathrm{C}=\mathrm{C}=\mathrm{N}$ -$t-\mathrm{Bu}$ (11a), generated as a byproduct during the reaction of $\mathbf{1 a}$ with 10, is inert toward 1a at ambient temperature due to its steric hindrance, the less hindered ketenimine $\mathrm{Ph}_{2} \mathrm{C}=\mathrm{C}=\mathrm{NTol}$

Scheme 2

(11b) was prepared by literature methods. ${ }^{50,51}$ The reaction of 1a with 2 equiv of $\mathbf{1 1 b}$ also spontaneously occurs at $25^{\circ} \mathrm{C}$ to generate azametallacyclobutane $\mathrm{Cp}_{2} \mathrm{Zr}(\mathrm{NTol})_{2} \mathrm{C}=\mathrm{CPh}_{2}(\mathbf{1 3})$ and 11a (Scheme 2). The ketenimine adduct $\mathbf{1 3}$ is cleanly generated at room temperature in toluene and can be isolated as black block crystals in 65% yield by recrystallization from toluene/ pentane at $-35{ }^{\circ} \mathrm{C}$. Spectral data for $\mathbf{1 3}$ in $\mathrm{C}_{6} \mathrm{D}_{6}$ include new resonances for the p-tolyl methyl group at $2.08 \mathrm{ppm}(6 \mathrm{H})$ in the ${ }^{1} \mathrm{H}$ NMR and $20.9 \mathrm{ppm}\left(\mathrm{CH}_{3}\right)$ in the ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR.

Monitoring this reaction by ${ }^{1} \mathrm{H}$ NMR spectrometry revealed a stepwise process that is dependent upon the concentration of 11b. When a stoichiometric amount of 11b is carefully introduced into a solution of 1a at room temperature, azametallacyclobutane complex $\mathrm{Cp}_{2} \mathrm{Zr}(\mathrm{N}-t-\mathrm{Bu})(\mathrm{NTol}) \mathrm{C}=\mathrm{CPh}_{2}(\mathbf{1 4})$ is generated spontaneously as a major product ($c a .80 \%$ by ${ }^{1} \mathrm{H}$ NMR; 67% isolated) although some $\mathbf{1 3}$ is also generated (Scheme 2). That $\mathbf{1 4}$ is a $1: 1$ adduct of $\left[\mathrm{Cp}_{2} \mathrm{Zr}=\mathrm{N}-t-\mathrm{Bu}\right]$ and 11b is demonstrated by its ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right)$ spectrum, which shows resonances due to the tert-butyl group at $0.93 \mathrm{ppm}(9 \mathrm{H})$ as well as a p-tolyl methyl resonance at $2.04 \mathrm{ppm}(3 \mathrm{H})$. When a second equivalent of 11b is introduced, the product 14 instantly reacts to produce $\mathbf{1 3}$ and 11a. In the absence of 11b, at ambient temperature 14 is slowly converted to 0.5 equiv of the bridging imido dimer $\left(\mathrm{Cp}_{2} \mathrm{ZrNTol}\right)_{2}(\mathbf{1 5})$ and 11a; $\mathbf{1 5}$ gradually precipitates from the solution. The latter reaction was driven to completion by heating to $45^{\circ} \mathrm{C}$ and thin green needles of $\mathbf{1 5}$ were isolated in 42% isolated yield. An analogue of the bridging dimer 15, $\left(\mathrm{Cp}_{2} \mathrm{ZrNC}_{6} \mathrm{H}_{4} \mathrm{X}\right)_{2}\left(\mathrm{X}=\mathrm{H}\right.$ or $\left.\mathrm{CMe}_{3}\right)$, has been synthesized previously by 1,2 -elimination of $\mathrm{Cp}_{2} \mathrm{Zr}\left(\mathrm{NHC}_{6} \mathrm{H}_{4} \mathrm{X}\right)$ (Me) at $85^{\circ} \mathrm{C} .{ }^{10,11}$ It was also observed earlier in a zirconiummediated imine metathesis reaction. ${ }^{52,53}$

Discussion

Mechanism of Imido/Oxo Exchange. The observations reported here and in earlier papers ${ }^{10,39}$ suggest strongly that the reaction between imido complex $\mathbf{1 a}$ and a wide range of carbonyl functionalities involves initial dissociation of THF, followed by overall $[2+2]$ cycloaddition between the CO and the $\mathrm{Zr}=\mathrm{N}$ moiety of the coordinatively unsaturated intermediate $\left[\mathrm{Cp}_{2} \mathrm{Zr}=\mathrm{N}-t-\mathrm{Bu}\right],{ }^{10,11}$ to give oxaazametallacyclobutanes 6. Similar [2 +2] cycloadditions were observed in the reactions of 1a with alkenes, ${ }^{10}$ alkynes, ${ }^{54}$ and imines, ${ }^{52,53}$ where fourmembered azametallacycles were isolated as products. In contrast, metallaoxetanes $\mathbf{6}$ cannot be isolated, although two such intermediates ($\mathbf{6 b}$ and $\mathbf{6 d}$) were detected by low-temperature ${ }^{1} \mathrm{H}$ NMR spectrometry. The three types of carbonyl compounds

[^5]
Scheme 3

Table 6. Products Formed on Reaction of $\mathbf{1}$ with Three Different Classes of Carbonyl Compounds

	oxygen containing zirconocene products (\mathbf{A})	$\mathrm{XC}=\mathrm{N}-t-\mathrm{Bu}(\mathbf{B})$
$\mathrm{RR}^{\prime} \mathrm{C}=\mathrm{O}(\mathbf{2 b}-\mathbf{d})$	$\left(\mathrm{Cp}_{2} \mathrm{Zr}=\mathrm{O}\right)_{n}(\mathbf{3})$	$\mathrm{RR}{ }^{\prime} \mathrm{C}=\mathrm{N}-t-\mathrm{Bu}(\mathbf{4 b - d})$
$\mathrm{CpCo}(\mathrm{CO})_{2}(\mathbf{7})$	$\left(\mathrm{Cp}_{2} \mathrm{Zr}\right)_{2}(\mu-\mathrm{O})(\mu-\mathrm{N}-t-\mathrm{Bu})(\mathbf{9})$	$\mathrm{CpCo}(\mathrm{CO})(\mathrm{C}=\mathrm{N}-t-\mathrm{Bu})(\mathbf{8 a})$
$\mathrm{Ph}_{2} \mathrm{C}=\mathrm{C}=\mathrm{O}(\mathbf{1 0})$	$\left(\mathrm{Cp}_{2} \mathrm{Zr}_{2} \mathrm{O}_{3} \mathrm{CCPh}_{2}(\mathbf{1 2)}\right.$	$\mathrm{Ph}_{2} \mathrm{C}=\mathrm{C}=\mathrm{N}-t \mathrm{Bu}(\mathbf{1 1 a})$

Scheme 4

In the reaction with 10:

In the [4+2] retrocycloaddition (Hanna et al.)

that undergo this reaction, and the products they lead to, are summarized in Table 6.

At first, we assumed that the reaction of an oxametallacyclobutane such as 6 would follow the known "Wittig-like" $[2+2]$ ligand exchange process, ${ }^{1,55-57}$ in which cycloreversion of 6 in the opposite sense would occur to provide the corresponding $\mathrm{C}=\mathrm{N}$ bonded products and the transient $\mathrm{Cp}_{2} \mathrm{Zr}=\mathrm{O}(\mathbf{1 6})$ which would rapidly oligomerize under the reaction conditions. However, the reactions of 1a with various carbonyl sources revealed an interesting result: the nature of the oxo-containing zirconocene products (A, Table 6) depends upon the character of the carbonyl reagents. This situation is summarized in Scheme 4. For example, in contrast to the white precipitate of oligomeric $\left(\mathrm{Cp}_{2} \mathrm{Zr}=\mathrm{O}\right)_{n}(3)$ that is produced when the imido complex 1a is treated with organic carbonyls $\mathbf{2 b}-\mathbf{d}$, only (μ oxo)(μ-imido)dimer (9) is generated in the reaction of $\mathbf{1 a}$ with metal carbonyls even under relatively vigorous reaction condi-

[^6] 579.
tions (2-3 days at $75^{\circ} \mathrm{C}$ in THF). On the other hand, the reaction of $\mathbf{1 a}$ with diphenylketene $\mathbf{1 0}$ produces neither oxozirconocene oligomer $\mathbf{3}$ nor (μ-oxo)(μ-imido)dimer $\mathbf{9}$ even in the presence of excess 1a. Instead, it generates the tris-oxo complex 12 formed from two molecules of $\mathrm{Cp}_{2} \mathrm{Zr}=\mathrm{O}$ (16) and one molecule of $\mathbf{1 0}$. Furthermore, the formation of each product $(\mathbf{3}, \mathbf{9}$, or $\mathbf{1 2})$ is not affected by modification of the reaction conditions such as changing the solvent or the ratio of the two starting materials. Finally, we ${ }^{58}$ found recently that thermolysis of the 6-membered ring complex $\mathrm{Cp}_{2} \overparen{\mathrm{Zr}-\mathrm{NArCMe}=\mathrm{CPhCHAr}^{\prime} \mathrm{O}}$ at $75^{\circ} \mathrm{C}$ extrudes an α, β-unsaturated imine and provides yet another apparent source of $\mathrm{Cp}_{2} \mathrm{Zr}=\mathrm{O}$. In this case in the absence of traps the oxo complex oligomerizes, as it does in the $\mathbf{1 a}+$ $\mathbf{2 b}-\mathbf{d}$ reaction. However, when the thermolysis is run in the presence of $\mathrm{Cp}_{2} \mathrm{ZrMe}_{2}$, oligomerization is prevented and the apparent oxozirconocene intermediate is trapped quantitatively as the soluble μ-oxo complex $\left(\mathrm{Cp}_{2} \mathrm{ZrMe}\right)_{2} \mathrm{O}$ (Scheme 4). Control experiments established that $\left[\mathrm{Cp}_{2} \mathrm{Zr}=\mathrm{O}\right]_{n}(\mathbf{3})$ does not react with $\mathrm{Cp}_{2} \mathrm{ZrMe}_{2}$, even at $75^{\circ} \mathrm{C}$.

The divergent behavior of the postulated " $\mathrm{Cp}_{2} \mathrm{Zr}=\mathrm{O}$ " in these different reactions leads to the inescapable conclusion that the simple monomeric oxozirconocene complex cannot be the actual product-forming intermediate in every case. One might assume, for example, that transient $\mathbf{1 6}$ oligomerizes in the absence of any compound capable of trapping it, but in the presence of another molecule of $\left[\mathrm{Cp}_{2} \mathrm{Zr}=\mathrm{N}-t-\mathrm{Bu}\right]$ it affords $(\mu$-oxo) $(\mu$ imido)dimer 9 . One must then ask why in the diphenylketene reaction no $\mathbf{9}$ is formed along with $\mathbf{1 2}$, which requires two $\mathrm{Cp}_{2}-$ $\mathrm{Zr}=\mathrm{O}$ fragments to ultimately find each other. Even more convincingly, addition of $\mathrm{Cp}_{2} \mathrm{ZrMe}_{2}$ to the reaction of $\mathbf{1 a}$ with $\mathbf{2 b}-\mathbf{d}$ (or with 10) still gives oligomer $\mathbf{3}$ (or tris-oxo complex 12). ${ }^{59}$ No diversion of the intermediate to $\left(\mathrm{Cp}_{2} \mathrm{ZrMe}\right)_{2} \mathrm{O}$ is observed, in striking contrast to the observation made in the thermolysis of $\mathrm{Cp}_{2} \mathrm{Zr}-\mathrm{NArMe}=\mathrm{CPhCHAr}{ }^{\prime} \mathrm{O}$ described above.

To account for the behavior of 1a with metal carbonyls, where (μ-oxo) (μ-imido) dimer $\mathbf{9}$ is formed, we suggest that stabilization of the $\mathrm{Cp}_{2} \mathrm{Zr}=\mathrm{O}$ fragment $\mathbf{1 6}$ by coordination to another metal center may be occurring. Precedent for this can be found in Proulx and Bergman's report of the "Wittig type" metathesis of $\mathrm{CpTa}\left(=\mathrm{CH}_{2}\right)\left(\mathrm{CH}_{3}\right)$ with $\operatorname{PhRe}(\mathrm{CO})_{5}$. Here an initial overall [2 +2] addition, similar to the reaction between $\mathrm{Cp}_{2} \mathrm{Zr}=\mathrm{NR}$ and $\mathrm{CpCo}(\mathrm{CO})_{2}$, occurs that leads to a product in which $\mathrm{Cp}_{2}-$ $\left(\mathrm{CH}_{3}\right) \mathrm{Ta}=\mathrm{O}$ is weakly coordinated to a rhenium center. ${ }^{60}$ In addition, a few other complexes in which a metal oxo moiety is coordinated to another metal center have been documented. ${ }^{61,62}$ The similarity of these reactions suggests the possibility that the weak coordination of transient 16 to a metal carbonyl fragment (for example, as in 17; Scheme 5) might prevent the self-oligomerization of the highly reactive $\mathrm{Cp}_{2} \mathrm{Zr}=\mathrm{O}$ species, allowing it to react instead with $\left[\mathrm{Cp}_{2} \mathrm{Zr}=\mathrm{N}-t-\mathrm{Bu}\right]$ to give (μ-oxo) (μ-imido)dimer 9 (path A in Scheme 5). Another possible way that the $\mathrm{Cp}_{2} \mathrm{Zr}=\mathrm{O}$ fragment can remain attached to the cobalt carbonyl moiety is illustrated in path B in Scheme 5. Here only one $\mathrm{Zr}-\mathrm{N}$ bond is initially cleaved in the first intermediate 18, giving zwitterion 19, which could rearrange

[^7]
Scheme 5

as shown in the Scheme to give 9 and the isonitrile product.
A third possible route to 9 that avoids free $\mathrm{Cp}_{2} \mathrm{Zr}=\mathrm{O}$ is shown in path C of Scheme 5. Here intermediate $\mathbf{1 8}$ reacts directly with the transient imido complex $\mathrm{Cp}_{2} \mathrm{Zr}=\mathrm{N}-t-\mathrm{Bu}$ to generate 9 in a concerted process. However, we do not see why such a mechanism should occur with the intermediate formed from metal carbonyl complexes but not with the analogous species that are presumably formed from ketones and ketenes.

Most perplexing is the reaction with diphenylketene, where two $\mathrm{Cp}_{2} \mathrm{Zr}=\mathrm{O}$ fragments wind up in the final product, avoiding oligomerization or trapping with 1a. Here we suggest that a dimeric intermediate formed early in the reaction might be involved. ${ }^{63-71}$ An attractive possibility for this dimer is complex 20 in Scheme 6, since this only has to extrude 2 mol of the observed ketenimine product $\mathrm{Ph}_{2} \mathrm{C}=\mathrm{C}=\mathrm{N}-t-\mathrm{Bu}$ to generate the subsequent bis- μ-oxo intermediate $\left[\mathrm{Cp}_{2} \mathrm{ZrO}\right]_{2}$. Insertion of the $\mathrm{C}=\mathrm{O}$ linkage of diphenylketene into a $\mathrm{Zr}-\mathrm{O}$ bond in this intermediate leads to the observed product. The type of double coordination of oxygen to zirconium proposed for intermediate 20 is known, but it is influenced by the ring size of the oxametallacycle formed. For instance, oxametallacycloheptene complexes of zirconocene are mononuclear in solution and in the solid state ${ }^{72}$ whereas smaller ring sizes ($3-,{ }^{64,71} 4-,{ }^{63,70}$ and 5^{65-69}-membered) of oxametallacycle derivatives are isolated as dimers. It therefore seems reasonable that the dimeric structure illustrated in Scheme 6 might be accessible to the

[^8]
Scheme 6

4-membered oxametallacycle $\mathbf{6 e}$. We considered the possibility that (μ-oxo) (μ-imido) dimer 9 might form in the reaction of $\mathbf{1 a}$ with diphenylketene, and could then undergo further reaction with $\mathbf{1 0}$ to form the tris-oxo product 12. However, a control experiment showed that $\mathbf{9}$ does not react with diphenylketene under the $\mathbf{1 a}+$ diphenylketene reaction conditions.

Note Added in Proof. If dimer 20 and μ-oxo dimer $\left[\mathrm{Cp}_{2} \mathrm{Zr}=\mathrm{O}\right]_{2}$ are the reactive intermediates in the ketene reaction, it occurred to us that a dimer analogous to $\mathbf{2 0}$ might also be involved in the reaction of $\mathbf{1}$ with simple ketones. This could be the true identity of the metastable species $\mathbf{6 b}$ (or $\mathbf{6 d}$) detected by NMR spectrometry when $\mathbf{1}$ is allowed to react with ketones $\mathbf{2 b}$ (or $\mathbf{2 d}$) at low temperature (i.e., $n=2$ in the structure of $\mathbf{6 b}$ and $\mathbf{6 d}$ shown earlier in this paper). As we have postulated with 20, 6b and $\mathbf{6 d}(n=2)$ should also be capable of decomposing to give $\left[\mathrm{Cp}_{2} \mathrm{Zr}=\mathrm{O}\right]_{2}$ before $\left[\mathrm{Cp}_{2} \mathrm{Zr}=\mathrm{O}\right]_{n}$ is formed. If this is the case, the μ-oxo dimer should be trappable by diphenylketene in the acetone reaction. To test this idea, we repeated the reaction of $\mathbf{1 a}$ with acetone at $-35^{\circ} \mathrm{C}$ and again observed the formation of the intermediate $\mathbf{6 b}$. Rather than allowing this solution to warm and release imine $\mathbf{4 b}$ and $\left[\mathrm{Cp}_{2} \mathrm{Zr}=\mathrm{O}\right]_{n}$, diphenylketene was added. Workup of the reaction mixture gave imine but no $\left[\mathrm{Cp}_{2} \mathrm{Zr}=\mathrm{O}\right]_{n}$; instead, as predicted, a quantitative yield of $\mathbf{1 2}$ was formed.

In summary, it seems likely that none of the reactions reported here extrude free $\mathrm{Cp}_{2} \mathrm{Zr}=\mathrm{O}$. We think the most likely source of this intermediate is in the thermal fragmentation of $\mathrm{Cp}_{2} \overline{\mathrm{Zr}}$
$\mathrm{NArCMe}=\mathrm{CPhCHAr}{ }^{\prime} \mathrm{O}$, since this is the one reaction in which we have been able to trap it with added $\mathrm{Cp}_{2} \mathrm{ZrMe}_{2}$, and the rate of this process exhibits a zeroth-order dependence on the concentration of the dimethylzirconium compound.

Mechanism of the Ketenimine Reaction. To determine whether the initial steps in the reaction of imido complex 1a with diphenylketene seemed reasonable, we sought an analogous reaction with ketenimines that might proceed somewhat less rapidly and thereby allow us to detect reaction intermediates. We knew from the reaction of $\mathbf{1 a}$ with diphenylketene that the ketenimine product $\mathrm{Ph}_{2} \mathrm{C}=\mathrm{C}=\mathrm{N}-t-\mathrm{Bu}$ (11a) is stable to further reaction with $\mathbf{1 a}$. We therefore investigated the reaction of $\mathbf{1 a}$ with the less hindered ketenimine $\mathrm{Ph}_{2} \mathrm{C}=\mathrm{C}=\mathrm{NTol}$ (11b). As summarized in Scheme 2, here it was possible to establish that the reaction proceeded by initial overall [$2+2$] cycloaddition, because the azametallacycle $\mathbf{1 4}$ could be detected and characterized by spectroscopic methods. The product 14 was also

Scheme 7

Scheme 8

observed to undergo overall [$2+2$] ring cleavage in the opposite direction, generating the N -tert-butyl ketenimine 11a and dimer 15. The driving force for these reactions must be the release of steric congestion caused by the presence of the N -tert-butyl group in 14. Similar conversions were observed earlier in the zirconium-mediated imine metathesis reactions studied by Meyer and Bergman, ${ }^{52,53}$ where azametallacyclobutane 19, in the absence of excess imine, undergoes the elimination of imine to give dimeric $\left[\mathrm{Cp}_{2} \mathrm{Zr}(\mathrm{NPh})\right]_{2}$ (Scheme 7). Extrapolation of Meyer and Bergman's kinetic results suggests that the reaction of imido complex 1a with ketenimine 11b proceeds by a dissociative mechanism involving formation of the transient imido complex $\left[\mathrm{Cp}_{2} \mathrm{Zr}=\mathrm{NTol}\right]$, which either dimerizes to give 15 or can be trapped by more N -phenyl ketenimine 11a to give isolable adduct 13 as shown in Scheme 8.

Summary

Imido/oxo exchange reactions between $\mathrm{Cp}_{2} \mathrm{Zr}=\mathrm{N}-t-\mathrm{Bu}$ (1a) and various organic and organometallic carbonyl compounds have been investigated. The reactivity of $\mathbf{1 a}$ toward organic carbonyl compounds (aldehydes and ketones) depends strongly on steric encumbrance and on the availability of α-hydrogens. Reactions with moderately hindered organic carbonyls $\mathbf{2 e - g}$ generate the enolate complexes $\mathbf{5 e}-\mathbf{g}$. In contrast, reactions with less hindered ketones and aldehydes $\mathbf{2 b}-\mathbf{d}$ undergo "Wittig-like" $[2+2]$ cycloaddition/cycloreversion to form oxozirconocene oligomer $\mathbf{3}$ and imines $\mathbf{4 b}-\mathbf{d}$. The reactions of 1a with $\mathrm{CpCo}(\mathrm{CO})_{2}(7)$ and $\mathrm{Ph}_{2} \mathrm{C}=\mathrm{C}=\mathrm{O}(\mathbf{1 0})$ also undergo imido/oxo exchange but lead to the new types of oxozir-conocene-containing products (μ-oxo) (μ-imido) dimer 9 and trisoxo complex 12, respectively, instead of 3 . All these reactions ultimately extrude the $\mathrm{Cp}_{2} \mathrm{Zr}=\mathrm{O}$ fragment, but because this moiety behaves differently in each reaction we do not believe it is generated as the free monomeric species in each transformation. In the reaction with metal carbonyls the fragment appears to be stabilized by coordination to the second "late" transition metal center, and we propose that the reaction with diphenylketene proceeds via a bis- μ-oxo zirconium dimer. It seems likely that $\mathrm{Cp}_{2} \mathrm{Zr}=\mathrm{O}$ is generated as a free intermediate in the earlier-reported thermolytic fragmentation of $\mathrm{Cp}_{2} \mathrm{Zr}$ (NArCMeCPhCRCHO), since it can be trapped by an external reagent in this reaction. Future work will be required to confirm these hypotheses and find ways to reliably generate and explore the chemistry of the elusive $\mathrm{Cp}_{2} \mathrm{Zr}=\mathrm{O}$.

Experimental Section

General. For a description of the instrumentation and general procedures used, see earlier papers from this laboratory. ${ }^{73}$

Unless otherwise specified, all reagents were purchased from commercial suppliers and dried over activated molecular sieves (4 Å) before use. Volatile compounds were flash distilled under reduced pressure after drying (e.g. acetone (2b) and 2-methylpropanal (2d) were dried over activated molecular sieves and flash-distilled at reduced pressure). The metal carbonyl complexes $\left(\mathrm{C}_{6} \mathrm{H}_{6}\right) \mathrm{Cr}(\mathrm{CO})_{3}, \mathrm{CpV}(\mathrm{CO})_{4}$, and $\mathrm{CpRe}(\mathrm{CO})_{3}$ were dissolved in benzene and dried over activated molecular sieves; the benzene was removed under reduced pressure after filtration. $\mathrm{CpCo}(\mathrm{CO})_{2}$ was passed through a small column of activated alumina and distilled under reduced pressure. $\mathrm{CpMn}(\mathrm{CO})_{3}$ was sublimed before use $\left(40{ }^{\circ} \mathrm{C}, 100\right.$ mtorr $)$. $\mathrm{CpFe}\left(\mathrm{CH}_{3}\right)(\mathrm{CO})_{2},{ }^{74,75}$ $\mathrm{Ph}_{2} \mathrm{C}=\mathrm{C}=\mathrm{O}(\mathbf{1 0}),{ }^{49}$ and $\mathrm{Ph}_{2} \mathrm{C}=\mathrm{C}=\mathrm{NTol}(\mathbf{1 1 b})^{50,51}$ were prepared by the literature methods. Synthesis of compounds $\mathrm{Cp}_{2} \mathrm{Zr}(=\mathrm{NR})(\mathrm{THF})$ $\left(\mathrm{R}=\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}(\mathbf{1 a}), 2,6-\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}_{6} \mathrm{H}_{4}(\mathbf{1 b})\right)$ are reported elsewhere. ${ }^{10,11}$
$\left(\mathbf{C H}_{3}\right)_{\mathbf{2}} \mathbf{C}=\mathbf{N}$ - \boldsymbol{t} - $\mathbf{B u} \mathbf{(4 b)}$. To $\mathbf{1 a}(69.7 \mathrm{mg}, 0.19 \mathrm{mmol})$ in THF (1 $\mathrm{mL})$ was added acetone ($\mathbf{2 b}$) $(14 \mu \mathrm{~L}, 0.19 \mathrm{mmol})$. Upon addition of $\mathbf{2 b}$, the color of the solution temporarily changed from yellow to redorange and a white solid precipitated from solution. The volatile materials (including THF) were collected by flash-distillation under reduced pressure and identified by GCMS and IR spectroscopy. The sample of $\mathbf{4 b}$ for the ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR data was separately prepared in THF- d_{8} by the same procedure. ${ }^{1} \mathrm{H}$ NMR (400 MHz, THF- d_{8}): $\delta 1.88$ (s, $\left.3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.84\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.20\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}$ ($400 \mathrm{MHz}, \mathrm{THF}-d_{8}$): $\delta(\mathrm{C}) 162.4,54.9 ; \delta\left(\mathrm{CH}_{3}\right) 31.3,30.8,21.5$. IR (THF): 1669 (s), 1457 (w), 1393 (w), 1356 (w) cm^{-1}.

Reactions of 1a with Organic Carbonyls $\mathbf{2 c} \mathbf{c}$ d. An NMR tube was charged with $\mathbf{1 a}\left(5 \mathrm{mg}, 1.4 \times 10^{-2} \mathrm{mmol}\right)$ and excess $\mathbf{2 c}-\mathbf{d}(2-3$ equiv) in THF- $d_{8}(0.4 \mathrm{~mL})$. A white precipitate was produced upon mixing the reagents. A ${ }^{1} \mathrm{H}$ NMR spectrum of the reaction mixture showed resonances due to a new imine and several peaks around 6 ppm due to generation of $\left(\mathrm{Cp}_{2} \mathrm{Zr}=\mathrm{O}\right)_{n}(\mathbf{3})$. The imine products $\mathbf{4 c}$ and $\mathbf{4 d}$ were identified by comparison of their spectra with literature spectral data. Compound $\mathbf{4 c}$ was also confirmed by independent preparation. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{THF}-d_{8}$) of $\mathrm{PhCH}=\mathrm{N}-t-\mathrm{Bu}(\mathbf{4 c}): \delta 8.27(\mathrm{~s}, 1 \mathrm{H}$, $\mathrm{N} H), 7.75(\mathrm{~d}, J=3.56 \mathrm{~Hz}, 2 \mathrm{H}$, phenyl), $7.35(\mathrm{~m}, 3 \mathrm{H}$, phenyl), $1.26(\mathrm{~s}$, $\left.9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right)\left(\mathrm{lit} .{ }^{21}{ }^{1} \mathrm{H}\right.$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 8.32(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}), 7.78-7.84$ (m, 2H, phenyl), 7.40-7.45 (m, 3H, phenyl), $\left.1.36\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right)\right)$. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{THF}-d_{8}$) of $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHCH}=\mathrm{N}-t-\mathrm{Bu}(\mathbf{4 d}): \delta 7.52$ $(\mathrm{d}, J=4.17 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C} H), 2.30\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 1.10(\mathrm{~s}, 9 \mathrm{H}$, $\left.\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 1.01\left(\mathrm{~d}, J=6.88 \mathrm{~Hz}, 6 \mathrm{H}, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right)\left(\right.$ lit..$^{21,22}{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 7.41(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}), 2.41\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right)$, $\left.1.16\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 1.05\left(\mathrm{~d}, J=5.9 \mathrm{~Hz}, 6 \mathrm{H}, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right)\right)$.

Spectroscopic Observation of $\left[\mathrm{Cp}_{2} \mathrm{ZrOC}\left(\mathrm{CH}_{3}\right)_{2} \mathrm{~N}-\boldsymbol{t}-\mathrm{Bu}\right]_{2}$ (6b). In the dry box, an NMR tube was charged with $\mathbf{1 a}\left(26.4 \mathrm{mg}, 7.2 \times 10^{-2}\right.$ $\mathrm{mmol})$ in THF- $d_{8}(0.4 \mathrm{~mL})$ and sealed with a rubber septum. The tube was removed from the drybox and cooled to $-78{ }^{\circ} \mathrm{C}$, then acetone (2b) $\left(5.5 \mu \mathrm{~L}, 7.5 \times 10^{-2} \mathrm{mmol}\right)$ was injected by syringe. The tube was then shaken and inserted into a pre-cooled NMR probe $\left(-50^{\circ} \mathrm{C}\right)$: at this point ${ }^{1} \mathrm{H}$ NMR analysis showed an approximately $2: 1$ ratio of $\mathbf{6 b}$ and $\mathbf{4 b}$. Conversion of the remaining $\mathbf{6 b}$ to $\mathbf{4 b}$ was monitored at $-10{ }^{\circ} \mathrm{C}$. At this temperature, resonances for products $\mathbf{4 b}$ and $\mathbf{3}$ continued to grow as resonances for intermediate $\mathbf{6 b}$ decreased in intensity. Upon warming to room temperature, the only major resonances observed were attributable to products $\mathbf{4 b}$ and 3. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{THF}-d_{8},-10^{\circ} \mathrm{C}$) of $\mathbf{6 b}: \delta 6.28\left(\mathrm{~s}, 10 \mathrm{H}, \mathrm{C}_{5} H_{5}\right), 1.34(\mathrm{~s}$, $\left.6 \mathrm{H},\left(\mathrm{CH}_{3}\right)_{2}\right), 1.22\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right)$.

Low-Temperature NMR Study of the Reaction of 1a with $\left(\mathbf{C H}_{3}\right)_{2} \mathbf{C H C H O}(\mathbf{2 d})$. In the drybox, an NMR tube was charged with $\mathrm{Cp}_{2} \mathrm{Zr}(=\mathrm{N}-t-\mathrm{Bu})(\mathrm{THF})(\mathbf{1 a})\left(20.1 \mathrm{mg}, 5.5 \times 10^{-2} \mathrm{mmol}\right)$ in THF- d_{8} $(0.4 \mathrm{~mL})$ and sealed with a rubber septum. The tube was removed from the box and cooled to $-78^{\circ} \mathrm{C}$, then $\mathbf{2 d}\left(4 \mathrm{mg}, 5.6 \times 10^{-2} \mathrm{mmol}\right)$ was injected by syringe. At this point the tube was treated similarly to the reaction described above that was performed to observe $\mathbf{6 b}$. The

[^9]tube was inserted into a pre-cooled probe set at $-45^{\circ} \mathrm{C}$. The ${ }^{1} \mathrm{H}$ NMR spectrum of the reaction mixture showed an approximately $2: 1: 2: 2$ ratio of 4d, 1a, intermediate $\left[\mathrm{Cp}_{2} \mathrm{ZrOCH}\left(\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right) \mathrm{N}-t-\mathrm{Bu}\right]_{2}$ (6d), and another unidentified intermediate (resonances at $\delta 6.28,4.42$ (d), 1.68 (m), and 0.89). Upon increasing the temperature of the probe, resonances due to both intermediates decreased in intensity above -30 ${ }^{\circ} \mathrm{C}$. The second intermediate disappeared faster than $\mathbf{6 d}$ and conversion of $\mathbf{6 d}$ to $\mathbf{4 d}$ was only observed above $0^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (400 MHz , THF-$d_{8},-10^{\circ} \mathrm{C}$) of $\mathbf{6 d}: 6.96 \mathrm{ppm}(\mathrm{d}, J=9.28 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}), 6.30 \mathrm{ppm}(\mathrm{s}$, $\left.10 \mathrm{H}, \mathrm{C}_{5} \mathrm{H}_{5}\right), 2.88 \mathrm{ppm}\left(\mathrm{m}, 1 \mathrm{H}, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 1.22 \mathrm{ppm}\left(\mathrm{s}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right)$, and $0.96 \mathrm{ppm}\left(\mathrm{d}, J=9.30 \mathrm{~Hz}, 6 \mathrm{H}, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right)$.
$\mathrm{Cp}_{2} \mathrm{Zr}(\mathrm{NH}-t-\mathrm{Bu})\left(\mathbf{O C C H}\left(\mathrm{CH}_{2}\right)_{3} \mathbf{C H C}\left(\mathrm{CH}_{3}\right)_{3}\right)(5 e)$. To a solution of 2-tert-butylhexan-1-one (2e) $(102 \mathrm{mg}, 0.66 \mathrm{mmol})$ in pentane was slowly added $1 \mathbf{1 a}(220 \mathrm{mg}, 0.60 \mathrm{mmol})$. The mixture was stirred for 1 h until the solution became homogeneous. Any pentane-insoluble material was removed by filtration and then the solvent and excess $2 \mathbf{e}$ were removed under vacuum. The residual white solid was recrystallized from pentane at $-35{ }^{\circ} \mathrm{C}$ to afford colorless crystals of 5e (210 $\mathrm{mg}, 0.47 \mathrm{mmol}, 78 \%) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$): $\delta 6.01(\mathrm{~s}, 5 \mathrm{H}$, $\left.\mathrm{C}_{5} H_{5}\right), 5.95\left(\mathrm{~s}, 5 \mathrm{H}, \mathrm{C}_{5} H_{5}\right), 4.65(\mathrm{br}, 1 \mathrm{H}, \mathrm{NH}), 4.52(\mathrm{t}, J=4.08 \mathrm{~Hz}$, $\left.1 \mathrm{H}, \mathrm{CH}\left(\mathrm{CH}_{2}\right)_{3}\right), 2.23\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{C} H_{2}\right), 1.91\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{3}\right), 1.74(\mathrm{~m}$, $\left.2 \mathrm{H}, \mathrm{CH}_{2}\right), 1.50\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 1.23\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 1.13(\mathrm{~s}, 9 \mathrm{H}$, $\left.\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right): \delta(\mathrm{C}) 163.8,56.6,34.0$; $\delta(\mathrm{CH}) 110.8,110.6,101.7,48.9 ; \delta\left(\mathrm{CH}_{2}\right) 27.6,25.4,23.1 ; \delta\left(\mathrm{CH}_{3}\right) 34.6$, 30.1. IR ($\mathrm{C}_{6} \mathrm{D}_{6}$): 3340 (w), 2943 (s), 1633, 1475, 1374, 1273, 1217 (s), 1033, 977, 783, $691 \mathrm{~cm}^{-1}$. Anal. Calcd for $\mathrm{C}_{24} \mathrm{H}_{37} \mathrm{NOZr}: \mathrm{C}, 64.52$; H, 8.35; N, 3.14. Found: C, 64.22; H, 8.33; N, 2.90.

Crystal Structure Determination of 5e. Colorless crystals of 5e were obtained by two recrystallizations from pentane solution at -35 ${ }^{\circ} \mathrm{C}$. A fragment having approximate dimensions of $0.20 \times 0.25 \times$ 0.30 mm was mounted on a glass fiber using Paratone N-hydrocarbon oil. All measurements were made on a Siemens SMART diffractometer with graphite monochromated Mo K α radiation. Cell constants and an orientation matrix obtained from a least-squares refinement using the measured positions of 6597 reflections with $I>3 \sigma$ in the range $3.00<2 \theta<45.00^{\circ}$ corresponded to a primitive monoclinic cell with the following dimensions: $a=9.4933(2) \AA, b=8.0068(2) \AA, c=$ $30.6878(9) \AA, \beta=91.643(1)^{\circ}, V=2331.65(9) \AA^{3}$. For $Z=4$ and fw $=445.77$, the calculated density is $1.27 \mathrm{~g} / \mathrm{cm}^{3}$. The systematic absences of $h 01: h+l \neq 2 n$ and $0 k 0: k \neq 2 n$ uniquely determine the space group to be $P 2_{1} / n$. The data were collected at a temperature of -103 $\pm 1{ }^{\circ} \mathrm{C}$. Frame data were collected using ω scans of 0.3° and a total counting time of 10 s per frame.

Data were integrated using the program SAINT and box parameters of $1.6 \times 1.6 \times 0.6^{\circ}$ out to a maximum 2θ value of 46.5°. The data were corrected for Lorentz and polarization effects. No decay correction was applied. The linear absorption coefficient μ for Mo $\mathrm{K} \alpha$ radiation is $4.8 \mathrm{~cm}^{-1}$. The data were corrected for absorption using an empirical correction based on multiple measurements of equivalent reflections as calculated using the program XPREP (v. 5.03; part of the SHELXTL crystal structure determination program, Siemens Industrial Automation, Inc., Madison, WI (1995)) $\left(\mu R=0.06, T_{\max }=0.87, T_{\min }=0.81\right)$. The 9504 integrated and corrected reflections were averaged to yield 3600 unique reflections ($R_{\mathrm{int}}=0.034$).

The structure was solved by direct methods and expanded using Fourier techniques. Inspection of the model following refinement of most of the atoms with anisotropic thermal parameters showed a pattern of difference Fourier peaks consistent with a total disorder of the enolate ligand around a pseudo-mirror plane containing the O and C 16 as shown in Figure 1. A major conformation contains $\mathrm{C} 11-\mathrm{C} 20$ and a minor one (see the supporting information) contains C211-C220. Peaks corresponding to all atoms of the disorder were located and refined with $B_{\text {iso }}$ fixed to the average of the $B_{\text {iso }}$ of the majority component. Adjustment of the disorder ratio revealed a shallow minimum in the residuals near an 18:82 ratio of two conformations. Hydrogen atoms were included in calculated positions for the majority component but not refined. The final cycle of full-matrix least-squares refinement was based on 2828 observed reflections $(I>3.00 \sigma(I)$) and 270 variable parameters and converged (largest parameter shift was 0.04 times its esd). The standard deviation of an observation of unit weight $\left(\left(\sum \omega-\right.\right.$ $\left.\left(\left|F_{\mathrm{o}}\right|-\left|F_{\mathrm{c}}\right|\right)^{2} /\left(N_{\mathrm{o}}-N_{\mathrm{v}}\right)\right)^{1 / 2}: N_{\mathrm{o}}=$ number of observations, $N_{\mathrm{v}}=$ number
of variables) was 2.46. The weighting scheme was based on counting statistics and included a factor $(p=0.031)$ to downweight the intense reflections. The maximum and minimum peaks on the final difference Fourier map corresponded to 0.41 and $-0.49 \mathrm{e}^{-} / \AA^{3}$, respectively. The structure consists of separated molecules of the compound packed in the unit cell and there are no abnormally short intermolecular contacts.
$\mathbf{C p}_{2} \mathbf{Z r}(\mathbf{N H}-\boldsymbol{t}-\mathbf{B u}) \mathbf{O C}\left(\mathbf{C H}_{2}\right)-\boldsymbol{t}$ - $\mathbf{B u}(\mathbf{5 f})$. To a solution of 3,3-dimethyl-2-butanone ($\mathbf{2 f}$) ($52 \mathrm{mg}, 0.52 \mathrm{mmol}$) in pentane was slowly added $\mathbf{1 a}$ $(150 \mathrm{mg}, 0.41 \mathrm{mmol})$. The mixture was stirred for 1 h until the solution became homogeneous. Any pentane-insoluble material was removed by filtration and then the solvent and excess $2 f$ were removed under vacuum. The residual solid was recrystallized from pentane at -35 ${ }^{\circ} \mathrm{C}$ to provide colorless crystals of $\mathbf{5 f}(134 \mathrm{mg}, 0.34 \mathrm{mmol}, 83 \%) .{ }^{1} \mathrm{H}$ NMR (400 MHz, $\mathrm{C}_{6} \mathrm{D}_{12}$): $\delta 6.09\left(\mathrm{~s}, 10 \mathrm{H}, \mathrm{C}_{5} H_{5}\right), 4.64(\mathrm{br}, 1 \mathrm{H}, \mathrm{N} H)$, 3.78 (s, 1H, OCHH), $3.47(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OCHH}), 1.18\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 1.02$ (s, 9H, $\left.\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{12}\right): \delta(\mathrm{C}) 176.6,56.8$, 37.6; $\delta(\mathrm{CH}) 111.3 ; \delta\left(\mathrm{CH}_{2}\right) 82.3 ; \delta\left(\mathrm{CH}_{3}\right) 34.9$, 28.8. IR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): 3128$, 2971 (s), 2907, 2879, 1595, 1365, 1300 (s), 1208 (s), 1189 (s), 1041, 986,792, $580 \mathrm{~cm}^{-1}$. Anal. Calcd for $\mathrm{C}_{20} \mathrm{H}_{31} \mathrm{NOZr}: \mathrm{C}, 61.17$; H, 7.96; N, 3.57. Found: C, 61.10; H, 8.10; N, 3.33.
$\mathbf{C p}_{2} \mathbf{Z r}(\mathbf{N H}-\boldsymbol{t}-\mathrm{Bu})\left(\mathbf{O C}\left(\mathbf{C}\left(\mathbf{C H}_{3}\right)_{2}\right) \mathbf{C H}\left(\mathbf{C H}_{3}\right)_{2}\right)(5 \mathrm{~g})$. A glass bomb (20 $\mathrm{mL})$ was loaded with $\mathbf{1 a}(119 \mathrm{mg}, 0.33 \mathrm{mmol})$ and 2,4-dimethyl-3pentanone ($\mathbf{2 g}$) ($49 \mathrm{mg}, 0.43 \mathrm{mmol}$) in THF (7 mL). The bomb was degassed with 1 freeze-pump-thaw cycle and heated to $45^{\circ} \mathrm{C}$ for 5 h. After removal of solvent and excess ketone under reduced pressure, the residual white solid was recrystallized from pentane at $-35^{\circ} \mathrm{C}$ to provide white crystals of $\mathbf{5 g}(102 \mathrm{mg}, 0.25 \mathrm{mmol}, 76 \%) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$): $\delta 5.96\left(\mathrm{~s}, 10 \mathrm{H}, \mathrm{C}_{5} H_{5}\right.$), $4.21(\mathrm{br}, 1 \mathrm{H}, \mathrm{NH}), 2.88$ (septet, $\left.J=6.85 \mathrm{~Hz}, 1 \mathrm{H},\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}\right), 1.77(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}), 1.76(\mathrm{~s}, 3 \mathrm{H}$, $\left.\mathrm{CH}_{3}\right), 1.24\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 1.11\left(\mathrm{~d}, J=6.85 \mathrm{~Hz}, 6 \mathrm{H},\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}\right)$. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right): \delta(\mathrm{C}) 159.8,98.6,56.5 ; \delta(\mathrm{CH}) 111.5$, $30.4 ; \delta\left(\mathrm{CH}_{3}\right) 34.6,20.6,19.1,18.8$. IR ($\left.\mathrm{C}_{6} \mathrm{D}_{6}\right): 3350(\mathrm{w}), 3103(\mathrm{w})$, 2961 (s), 2731 (w), 1660, 1475, 1387, 1360, 1271 (s), 1210 (s), 1077 (s), 1033, 989, $775 \mathrm{~cm}^{-1}$. Anal. Calcd for $\mathrm{C}_{21} \mathrm{H}_{33} \mathrm{NOZr}: \mathrm{C}, 62.02 ; \mathrm{H}$, 8.18; N, 3.44. Found: C, 61.90; H, 8.25; N, 3.31.
$\mathbf{C p C o}(\mathbf{C O})(\mathbf{C N}-\boldsymbol{t}-\mathbf{B u})(8 \mathbf{8})$. A glass bomb $(50 \mathrm{~mL})$ was loaded with $1 \mathbf{a}(361 \mathrm{mg}, 0.99 \mathrm{mmol})$ and $\mathrm{CpCo}(\mathrm{CO})_{2}(7)(546 \mathrm{mg}, 3.03 \mathrm{mmol})$ in THF (ca. 20 mL). The bomb was degassed with 1 freeze-pumpthaw cycle and heated to $75^{\circ} \mathrm{C}$ for 1.5 days. After the solvent and excess 7 were removed under reduced pressure, the residual solid was extracted with pentane. The pentane solution was passed through a small column (0.25 in . by 2 in .) of activated alumina to remove residual $\left(\mathrm{Cp}_{2} \mathrm{Zr}\right)_{2}(\mu-\mathrm{O})(\mu-\mathrm{N}-t-\mathrm{Bu})(9)$. Evaporation of pentane from the filtrate afforded red solid $\mathbf{8 a}(62 \mathrm{mg}, 0.26 \mathrm{mmol}, 53 \%)$. ${ }^{1} \mathrm{H} \mathrm{NMR}(400 \mathrm{MHz}$, $\left.\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta 4.76\left(\mathrm{~s}, 5 \mathrm{H}, \mathrm{C}_{5} \mathrm{H}_{5}\right), 0.90\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right): \delta(\mathrm{C}) 208.4,161.6,57.0 ; \delta(\mathrm{CH}) 82.7 ; \delta\left(\mathrm{CH}_{3}\right) 30.5$. IR (Nujol): 2990, 2117, 2072, 2028, 1948, 1375, $1217 \mathrm{~cm}^{-1}$. (lit. ${ }^{41}$ $\left.{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta 4.75\left(\mathrm{~s}, 5 \mathrm{H}, \mathrm{C}_{5} \mathrm{H}_{5}\right), 0.91\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right)\right)$.
$\mathbf{C p C o}\left({ }^{13} \mathbf{C O}\right)_{2}\left(7-{ }^{13} \mathbf{C}\right)$. A glass bomb $(10 \mathrm{~mL})$ was loaded with $\mathrm{CpCo}(\mathrm{CO})_{2}(7)(170 \mathrm{mg}, 0.47 \mathrm{mmol})$. After the bomb was degassed with 2 freeze-pump-thaw cycles, it was filled with ${ }^{13} \mathrm{CO}$ to 1.5 atm and shaken for 1 day. This process was repeated one more time. Two cycles of ${ }^{13} \mathrm{CO}$ exchange provided $86 \pm 4 \%{ }^{13} \mathrm{CO}$ labeled $\mathrm{CpCo}-$ $\left({ }^{13} \mathrm{CO}\right)_{2}\left(7-{ }^{13} \mathrm{C}\right) .{ }^{13} \mathrm{C}$ incorporation of $7-{ }^{13} \mathrm{C}$ was determined by EI mass spectroscopy (determined by integration of relative mass peaks) as well as ${ }^{13} \mathrm{C}$ NMR spectra and IR spectra.
$\mathbf{C p C o}\left({ }^{13} \mathrm{CO}\right)\left({ }^{13} \mathbf{C N}-t-\mathrm{Bu}\right)\left(8 \mathrm{a}-{ }^{13} \mathbf{C}\right) . \quad \mathrm{CpCo}\left({ }^{13} \mathrm{CO}\right)\left({ }^{13} \mathrm{CN}-t-\mathrm{Bu}\right)$ was prepared in a fashion analogous to the synthesis of $\mathbf{8 a}$ except that 86% ${ }^{13} \mathrm{CO}$ labeled $\mathrm{CpCo}\left({ }^{13} \mathrm{CO}\right)_{2}\left(7-{ }^{13} \mathrm{C}\right)$ was used in place of unlabeled 7. EI mass spectroscopy as well as spectral data $\left({ }^{13} \mathrm{C}\right.$ NMR spectra and IR) showed that $\mathrm{CpCo}\left({ }^{13} \mathrm{CO}\right)\left({ }^{13} \mathrm{CN}-t\right.$ - Bu$)$ was generated with $84 \pm 4 \%$ incorporation of ${ }^{13} \mathrm{C}$ label.
$\left(\mathbf{C p}_{2} \mathbf{Z r}\right)_{\mathbf{2}}(\boldsymbol{\mu} \mathbf{- O})(\boldsymbol{\mu}-\mathbf{N}-\boldsymbol{t}-\mathbf{B u})(\mathbf{9})$. A glass bomb (50 mL) was loaded with $1 \mathbf{1 a}(361 \mathrm{mg}, 0.99 \mathrm{mmol})$ and $\mathrm{CpCo}(\mathrm{CO})_{2}(7)(546 \mathrm{mg}, 3.03 \mathrm{mmol})$ in THF (ca. 20 mL). The reaction mixture was degassed with 1 freeze-pump-thaw cycle and heated to $75^{\circ} \mathrm{C}$ for 1.5 days. After removal of solvent and excess 7 under reduced pressure, the residual solid was washed with pentane. The pentane-insoluble material was then collected and dissolved in warm $\mathrm{Et}_{2} \mathrm{O}$. Slow evaporation of $\mathrm{Et}_{2} \mathrm{O}$ from the solution at room temperature afforded block red crystals of 9 ($79 \mathrm{mg}, 0.15 \mathrm{mmol}, 30 \%$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$): $\delta 6.10(\mathrm{~S}$, $\left.20 \mathrm{H}, \mathrm{C}_{5} H_{5}\right), 1.12\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right)$:
$\delta(\mathrm{C}) 62.9 ; \delta(\mathrm{CH}) 112.1 ; \delta\left(\mathrm{CH}_{3}\right)$ 37.3. IR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): 2959,2356,1168$, 1027, 791, $631(\mathrm{~s}) \mathrm{cm}^{-1}$. MS (EI): m/e $529.9\left(\mathrm{M}^{+}\right)$. Anal. Calcd for $\mathrm{C}_{24} \mathrm{H}_{29} \mathrm{NOZr}_{2}$: C, $54.40 ; \mathrm{H}, 5.52$; N, 2.64. Found: C, $54.65 ; \mathrm{H}, 5.82$; N, 2.52.
$\mathbf{C p C o}(\mathbf{C O})\left(2,6-\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}_{6} \mathrm{H}_{3} \mathrm{NC}\right)(8 \mathrm{~b})$. A glass bomb was charged with $\mathbf{1 b}(208 \mathrm{mg}, 0.57 \mathrm{mmol})$ and $7(321 \mathrm{mg}, 1.78 \mathrm{mmol})$ in $\mathrm{C}_{6} \mathrm{H}_{6}(10$ $\mathrm{mL})$. The bomb was degassed with 1 freeze-pump-thaw cycle, heated to $75^{\circ} \mathrm{C}$ for 1 day, and then analyzed by ${ }^{1} \mathrm{H}$ NMR spectrometry. No major resonances near 6 ppm were observed, but resonances attributable to $\mathrm{CpCo}(\mathrm{CO})\left(2,6-\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}_{6} \mathrm{H}_{3} \mathrm{NC}\right)(\mathbf{8 b})$ were generated during the reaction. After the zirconium-containing products were removed from the reaction mixure by filtration through florisil $(\times 2)$, the red solution was chromatographed on silica gel (using a $1: 1$ ratio of hexane and benzene) to separate $\mathbf{8 b}$ from $\mathrm{CpCo}\left(2,6-\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}_{6} \mathrm{H}_{3} \mathrm{NC}\right)_{2}{ }^{43}(12 \%$ by ${ }^{1} \mathrm{H}$ NMR $)$ and to afford $\mathbf{8 b}$ as a red-brown solid $(72.6 \mathrm{mg}, 0.26 \mathrm{mmol}$, $46 \%)$. ${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right)$ of $\mathrm{CpCo}(\mathrm{CO})_{2}\left(2,6-\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}_{6} \mathrm{H}_{3}-\right.$ $\mathrm{NC}): \delta 6.72(\mathrm{t}, J=7.48 \mathrm{~Hz}, 1 \mathrm{H}$, aryl), $6.63(\mathrm{~d}, J=7.41 \mathrm{~Hz}, 2 \mathrm{H}$, aryl), $4.79\left(\mathrm{~s}, 5 \mathrm{H}, \mathrm{C}_{5} \mathrm{H}_{5}\right), 2.08\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{CH}_{3}\right) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}(400 \mathrm{MHz}$, $\left.\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta(\mathrm{C}) 133.8,130.2,128.5 ; \delta(\mathrm{CH}) 127.8,126.4,83.3 ; \delta\left(\mathrm{CH}_{3}\right)$ 18.6 (one quaternary C was not located). IR ($\left.\mathrm{C}_{6} \mathrm{D}_{6}\right): 2071,1955 \mathrm{~cm}^{-1}$ (lit. ${ }^{43}$ IR ($\mathrm{C}_{6} \mathrm{D}_{6}$): 2075, $1956 \mathrm{~cm}^{-1}$).

Reactions of 1a with Various Metal Carbonyls ($\mathrm{CpV}(\mathrm{CO})_{4}$, CpFe $\left(\mathrm{CH}_{3}\right)(\mathrm{CO})_{2},\left(\mathbf{C}_{6} \mathbf{H}_{6}\right) \mathrm{Cr}(\mathrm{CO})_{3}$, or $\left.\mathrm{Mo}(\mathrm{CO})_{6}\right)$. An NMR tube was charged with $1 \mathbf{1 a}\left(14 \mathrm{mg}, 3.8 \times 10^{-2} \mathrm{mmol}\right)$ and a metal carbonyl complex (3 equiv) in THF- $d_{8}(0.5 \mathrm{~mL})$. The tube was degassed with 1 freeze-pump-thaw cycle and sealed on a vacuum line. The reaction was then monitored using ${ }^{1} \mathrm{H}$ NMR until no starting imido complex $\mathbf{1 a}$ was observed (2.5 days at $25^{\circ} \mathrm{C}$ for $\mathrm{CpV}(\mathrm{CO})_{4}, 1$ day at $75^{\circ} \mathrm{C}$ for $\mathrm{CpFe}\left(\mathrm{CH}_{3}\right)(\mathrm{CO})_{2}, 6 \mathrm{~h}$ at $25^{\circ} \mathrm{C}$ for $\left(\mathrm{C}_{6} \mathrm{H}_{6}\right) \mathrm{Cr}(\mathrm{CO})_{3}$, and 15 h at $25^{\circ} \mathrm{C}$ for $\left.\mathrm{Mo}(\mathrm{CO})_{6}\right)$. The reactions proceeded cleanly by ${ }^{1} \mathrm{H}$ NMR and always generated new resonances at $6.25(20 \mathrm{H})$ and $1.31(9 \mathrm{H}) \mathrm{ppm}$ due to formation of 9 . The corresponding isocyanide complex $\left(\mathrm{CpV}(\mathrm{CO})_{3^{-}}\right.$ $(\mathrm{CN}-t-\mathrm{Bu}), \mathrm{CpFe}\left(\mathrm{CH}_{3}\right)(\mathrm{CO})(\mathrm{CN}-t-\mathrm{Bu})$, or $\mathrm{C}_{6} \mathrm{H}_{6} \mathrm{Cr}(\mathrm{CO})_{2}(\mathrm{CN}-t-\mathrm{Bu})$, respectively) was also generated except for the reaction of $\mathrm{Mo}(\mathrm{CO})_{6}$ in which several tert-butyl resonances near 1.5 ppm were observed (presumably due to formation of a mixture of $\left.\mathrm{Mo}(\mathrm{CO})_{6-n}(\mathrm{CN}-t-\mathrm{Bu})_{n}\right)$. Zirconium-containing 9 was removed by passing the solution through a small column of activated alumina. Evaporation of the solvent from the filtrate afforded the isocyanide product and excess metal carbonyl complex. The ${ }^{1} \mathrm{H}$ NMR spectra of the isocyanide products were compared to literature spectral data. ${ }^{1} \mathrm{H} \mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right)$ of $\mathrm{CpV}(\mathrm{CO})_{3}(\mathrm{CN}-t-\mathrm{Bu}): \delta 4.57\left(\mathrm{~s}, 5 \mathrm{H}, \mathrm{C}_{5} H_{5}\right), 0.89\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right)$ (lit. ${ }^{44}$ ${ }^{1} \mathrm{H}$ NMR $\left.\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta 4.58\left(\mathrm{~s}, 5 \mathrm{H}, \mathrm{C}_{5} \mathrm{H}_{5}\right), 0.90\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right)\right) .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathrm{CpFe}\left(\mathrm{CH}_{3}\right)(\mathrm{CO})(\mathrm{CN}-t-\mathrm{Bu}): \delta 4.48(\mathrm{~s}, 5 \mathrm{H}$, $\left.\mathrm{C}_{5} \mathrm{H}_{5}\right), 1.38\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right),-0.07\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$ (lit. ${ }^{45}{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 4.62\left(\mathrm{~s}, 5 \mathrm{H}, \mathrm{C}_{5} H_{5}\right), 1.44\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right),-0.06(\mathrm{~s}, 3 \mathrm{H}$, $\left.\mathrm{CH}_{3}\right)$). ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of $\left(\mathrm{C}_{6} \mathrm{H}_{6}\right) \mathrm{Cr}(\mathrm{CO})_{2}(\mathrm{CN}-t-\mathrm{Bu}): \delta$ 4.93 (s, 6H, $\left.\mathrm{C}_{6} \mathrm{H}_{6}\right), 1.37\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right)\left(\mathrm{lit}{ }^{47}{ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): \delta\right.$ $\left.5.43\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{6}\right), 1.38\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right)\right)$.

Reactions of 1 a with $\mathbf{C p M}(\mathbf{C O})_{3}(\mathbf{M}=\mathbf{M n}, \mathrm{Re})$ in THF- \boldsymbol{d}_{8}. An NMR tube was charged with $\mathbf{1 a}(12 \mathrm{mg}, c a .33 \mu \mathrm{~mol})$ and $\mathrm{CpM}(\mathrm{CO})_{3}$ $(\mathrm{M}=\mathrm{Mn}, \mathrm{Re})$ (3 equiv) in THF- $d_{8}(0.4 \mathrm{~mL})$. The tube was degassed with 1 freeze-pump-thaw cycle and sealed on a vacuum line. The reaction mixture was heated to $110(\mathrm{M}=\mathrm{Re})$ or $135{ }^{\circ} \mathrm{C}(\mathrm{M}=\mathrm{Mn})$ for 3.5 days and monitored by ${ }^{1} \mathrm{H}$ NMR spectrometry. The ratio of products was measured by one-pulse integration of the ${ }^{1} \mathrm{H}$ NMR spectra. In the reaction of $\mathrm{CpMn}(\mathrm{CO})_{3}$, ca. 60% of $\mathrm{Cp}_{2} \mathrm{Zr}(\mathrm{NH}-t-\mathrm{Bu})\left(\eta^{1}: \eta^{5}-\right.$ $\left.\mathrm{C}_{5} \mathrm{H}_{4}\right) \mathrm{Mn}(\mathrm{CO})_{3}$ was generated and ca. 30% of 9 observed. In the reaction of $\mathrm{CpRe}(\mathrm{CO})_{3}, c a .85 \%$ of $\mathrm{Cp}_{2} \mathrm{Zr}(\mathrm{NH}-t-\mathrm{Bu})\left(\eta^{1}: \eta^{5}-\mathrm{C}_{5} \mathrm{H}_{4}\right) \operatorname{Re}(\mathrm{CO})_{3}$ and $\left(\mathrm{Cp}_{2} \mathrm{Zr}\right)_{2}(\mathrm{NH}-t-\mathrm{Bu})_{2}\left(\eta^{1}: \eta^{1}: \eta^{5}-\mathrm{C}_{5} \mathrm{H}_{3}\right) \operatorname{Re}(\mathrm{CO})_{3}$ were observed and only 15% of 9 was generated. During both reactions, tert-butyl resonances at 1.15 ppm were generated (presumably due to formation of CpM -$\left.(\mathrm{CO})_{2}(\mathrm{CN}-t-\mathrm{Bu})(\mathrm{M}=\mathrm{Mn}, \mathrm{Re})\right)$, but not clearly indentified due to the complex nature of the spectra. The spectral data for $\mathrm{Cp}_{2} \mathrm{Zr}(\mathrm{NH}-t-\mathrm{Bu})-$ $\left(\eta^{1}: \eta^{5}-\mathrm{C}_{5} \mathrm{H}_{4}\right) \mathrm{Mn}(\mathrm{CO})_{3}, \mathrm{Cp}_{2} \mathrm{Zr}(\mathrm{NH}-t-\mathrm{Bu})\left(\eta^{1}: \eta^{5}-\mathrm{C}_{5} \mathrm{H}_{4}\right) \mathrm{Re}(\mathrm{CO})_{3}$, and $\left(\mathrm{Cp}_{2}-\right.$ $\mathrm{Zr})_{2}(\mathrm{NH}-t-\mathrm{Bu})_{2}\left(\eta^{1}: \eta^{1}: \eta^{5}-\mathrm{C}_{5} \mathrm{H}_{3}\right) \mathrm{Re}(\mathrm{CO})_{3}$ are reported elsewhere. ${ }^{39,40}$
$\mathbf{P h}_{2} \mathbf{C}=\mathbf{C}=\mathbf{N} \boldsymbol{t} \boldsymbol{t}-\mathbf{B u}$ (11a). There are three ways to obtain ketenimine generated as a by-product during the synthesis of $\mathbf{1 2}, \mathbf{1 3}$, and $\mathbf{1 5}$. Isolation of 11a from those reactions is described below. (A) The procedure was the same as that used in the synthesis of 12. After crystallization of 12, the mother liquor was passed through dried florisil $(5 \times 0.8 \mathrm{~cm})$ two times to destroy any residual zirconium-containing
compounds. Evaporation of the filtrate under reduced pressure afforded 11a as a yellow oil ($43 \mathrm{mg}, 0.17 \mathrm{mmol}, 71 \%$). (B) The procedure was the same as that used in the synthesis of $\mathbf{1 3}$. After $\mathbf{1 3}$ was crystallized from the pentane solution, the mother liquor was passed through florisil $(5 \times 0.8 \mathrm{~cm})$ two times to destroy any residual zirconium-containing compounds. Evaporation of the filtrate under reduced pressure also afforded 11a as a yellow oil ($62 \mathrm{mg}, 0.25 \mathrm{mmol}, 58 \%$). (C) The reaction procedure was the same as that used in the synthesis of $\mathbf{1 5}$. After isolation of insoluble 15, the mother liquor was passed through florisil to destroy any residual zirconium-containing compounds. Removal of the solvent from the filtrate under reduced pressure also afforded 11a ($25 \mathrm{mg}, 0.10 \mathrm{mmol}, 73 \%$). Several attempts failed to give material suitable for elemental analysis and so the ketenimine was characterized spectroscopically. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right): \delta 7.41$ (d, $J=8.4 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{Ar}-H), 7.15(\mathrm{dd}, J=7.93 \mathrm{~Hz}, J=7.6 \mathrm{~Hz}, 4 \mathrm{H}$, $\mathrm{Ar}-H), 7.15(\mathrm{t}, J=7.39 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}-H), 1.16\left(\mathrm{~s}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}, 9 \mathrm{H}\right) .{ }^{13} \mathrm{C}-$ $\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{12}$): $\delta(\mathrm{C}) 183.1,136.4,60.3 ; \delta(\mathrm{CH}) 129.0$, 127.9, 126.0; $\delta\left(\mathrm{CH}_{3}\right) 30.8$ (one quaternary C was not located). IR (THF): 2015 (s), 1601, 1742, 1496, 757, $695 \mathrm{~cm}^{-1}$.
$\left(\mathbf{C p}_{2} \mathbf{Z r}\right)_{2} \mathbf{O}_{\mathbf{3}} \mathbf{C C P h}_{\mathbf{2}} \mathbf{(1 2)}$. To a solution of $\mathbf{1 a}(89 \mathrm{mg}, 0.24 \mathrm{mmol})$ in 10 mL of $\mathrm{C}_{6} \mathrm{H}_{6}$ was added $\mathrm{Ph}_{2} \mathrm{C}=\mathrm{C}=\mathrm{O}(\mathbf{1 0})(111 \mathrm{mg}, 0.57 \mathrm{mmol})$. Upon the addition of $\mathbf{1 0}$, the color of the solution changed from yellow to orange. The solution was then stirred for 10 min . Slow vapor diffusion of pentane into the solution followed by slow cooling to -35 ${ }^{\circ} \mathrm{C}$ afforded orange crystals of $12\left(53 \mathrm{mg}, 7.9 \times 10^{-2} \mathrm{mmol}, 65 \%\right) .{ }^{1} \mathrm{H}$ NMR (400 MHz, THF- d_{8}): $\delta 7.34(\mathrm{dd}, J=8.2 \mathrm{~Hz}, J=1.1 \mathrm{~Hz}, 4 \mathrm{H}$, $\mathrm{Ph}-H), 7.15(\mathrm{dd}, J=8.1 \mathrm{~Hz}, J=7.5 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{Ph}-H), 6.91(\mathrm{dd}, J=7.3$ $\mathrm{Hz}, J=1.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ph}-H), 6.35\left(\mathrm{~s}, 20 \mathrm{H}, \mathrm{C}_{5} H_{5}\right) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{THF}-d_{8}\right): \delta(\mathrm{C}) 166.8,144.7,90.5 ; \delta(\mathrm{CH}) 130.8,127.7,123.0$, 114.0. IR (THF): 3110 (w), 1536 (s), 1329 (w), 1319 (w), 1018 (w), 989 (w), 772, 697, 612, 556, $480 \mathrm{~cm}^{-1}$. HRMS (EI) m/e calcd for $\mathrm{C}_{34} \mathrm{H}_{30} \mathrm{O}_{3} \mathrm{Zr}_{2} 668.0308\left(\mathrm{M}^{+}\right)$; found $668.0305\left(\mathrm{M}^{+}\right)$.

Crystal Structure Determination of $\mathbf{[1 2 \cdot 0 . 5 T H F}]$. A yellow crystal of $\mathbf{1 2}$ (which turned out to be the cyclic organometallic complex crystallized with 0.5 molecules of THF) was obtained by slow vapor diffusion of pentane into a THF solution followed by cooling to -35 ${ }^{\circ}$ C. A fragment cleaved from this crystal was mounted as described for 5e. X-ray data were collected as for 5 e except that an Enraf-Nonius CAD-4 diffractometer was used. The final cell parameters and specific data collection parameters for this data set are given in Table 1.

The 3022 raw intensity data were converted to structure factor amplitudes and their esd's by correction for scan speed, background, and Lorentz and polarization effects. No correction for crystal decomposition was necessary. An empirical absorption correction based on azimuthal scan data was applied to the data ($T_{\max }=0.998, T_{\min }=$ 0.934 , used by the program DIFABS in MOLEN). The structure was solved by Patterson methods and refined via standard least-squares and Fourier techniques (hydrogen atoms ignored). The final residuals for 179 variables refined against the 1753 data set for which $F^{2}>3 \sigma\left(F^{2}\right)$ are given in Table 1. The largest peak in the final difference Fourier map had an electron density of $0.66 \mathrm{e}^{-} / \mathrm{A}^{3}$, and the lowest excursion was $-0.27 \mathrm{e}^{-} / \mathrm{A}^{3}$. The p-factor, used to reduce the weight of intense reflections, was set to 0.03 in the last cycles of refinement. Only the zirconium atom was refined with anisotropic thermal parameters.
$\mathbf{C p}_{2} \mathbf{Z r}(\mathbf{N T o l})_{2} \mathbf{C}=\mathbf{C P h}_{\mathbf{2}}$ (13). To 1a ($156 \mathrm{mg}, 0.43 \mathrm{mmol}$) in 20 mL of toluene was added $\mathrm{Ph}_{2} \mathrm{C}=\mathrm{C}=\mathrm{NTol}(11 \mathrm{~b})(244 \mathrm{mg}, 0.86 \mathrm{mmol})$. Upon addition of $\mathbf{1 1 b}$, the color of the solution changed from yellow
to dark brown. The solution was stirred for 1 h and the solvent was removed under reduced pressure. The residue was washed with pentane and recrystallized from toluene layered with pentane at $-35^{\circ} \mathrm{C}$ to afford dark brown block crystals of $13(169 \mathrm{mg}, 0.28 \mathrm{mmol}, 65 \%)$. The pentane extract mostly consisted of $\mathrm{Ph}_{2} \mathrm{C}=\mathrm{C}=\mathrm{N}-t-\mathrm{Bu}$ (11a), but some $\mathbf{1 3}$ was also dissolved in the solution. Dark brown crystals of $\mathbf{1 3}$ would also be grown from the pentane solution at $-35{ }^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H}$ NMR $(400$ $\mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$): $\delta 7.46(\mathrm{dd}, J=7.2 \mathrm{~Hz}, J=1.1 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{Ph}-H), 7.09$ $(\mathrm{dd}, J=7.4 \mathrm{~Hz}, J=8.0 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{Ph}-H), 6.83(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 4 \mathrm{H}$, Tol- H), $6.80(\mathrm{tt}, J=7.4 \mathrm{~Hz}, J=1.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ph}-H), 6.62(\mathrm{~d}, J=8.1$ $\mathrm{Hz}, 4 \mathrm{H}$, Tol- H), $5.88\left(\mathrm{~s}, 10 \mathrm{H}, \mathrm{C}_{5} H_{5}\right), 2.08\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{CH}_{3}\right) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$): $\delta(\mathrm{C}) 149.2,144.8,142.5,129.3,92.1 ; \delta(\mathrm{CH}) 130.8$, 128.8, 127.7, 123.3, 120.1, 115.9; $\delta\left(\mathrm{CH}_{3}\right)$ 20.9. IR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): 3075,3039$, 2958, 2913, 1965, 1505 (s), 1316, 810, $689 \mathrm{~cm}^{-1}$. MS (EI): m/e 609.8 $\left(\mathrm{M}^{+}\right)$. Anal. Calcd for $\mathrm{C}_{38} \mathrm{H}_{34} \mathrm{~N}_{2} \mathrm{Zr}$: C, $74.83 ; \mathrm{H}, 5.62 ; \mathrm{N}, 4.59$. Found: C, 74.64; H, 5.74; N, 4.46.
$\mathbf{C p}_{2} \mathbf{Z r}(\mathbf{N}-\boldsymbol{t}-\mathbf{B u})(\mathbf{N T o l}) \mathbf{C C P h}_{\mathbf{2}}$ (14). To $\mathbf{1 a}(156 \mathrm{mg}, 0.43 \mathrm{mmol})$ in toluene (6 mL) was added $\mathrm{Ph}_{2} \mathrm{C}=\mathrm{C}=\mathrm{NTol}(11 \mathrm{~b})(122 \mathrm{mg}, 0.43 \mathrm{mmol})$. Upon addition of $\mathbf{1 1 b}$, the color of the solution changed from yellow to dark brown. The solvent was immediately removed under reduced pressure. The residue was washed with pentane to remove $\mathrm{Ph}_{2} \mathrm{C}=\mathrm{C}=\mathrm{N}$ t - $\mathrm{Bu}(11 a)$ and then recrystallized from toluene layered with pentane at $-35^{\circ} \mathrm{C}$ to afford $\mathbf{1 4}$ as a red-brown precipitate $(165 \mathrm{mg}, 0.29 \mathrm{mmol}$, 67%). Because 14 decomposes to 15 and 11a at the ambient temperature, spectral data other than ${ }^{1} \mathrm{H}$ NMR were not obtained. ${ }^{1} \mathrm{H}$ NMR (400 MHz, C ${ }_{6} \mathrm{D}_{6}$): $\delta 7.38(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{Ph}-H), 7.15(\mathrm{t}, J$ $=7.6 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{Ph}-H), 6.89(\mathrm{t}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ph}-H), 6.83(\mathrm{~d}, J=8.2$ $\mathrm{Hz}, 2 \mathrm{H}$, Tol- H), $6.76(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Tol}-H), 6.01\left(\mathrm{~s}, 10 \mathrm{H}, \mathrm{C}_{5} H_{5}\right)$, $2.04\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 0.92\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right)$.
$\left[\mathbf{C p}_{2} \mathbf{Z r}(\mathbf{N T o l})\right]_{2}(\mathbf{1 5})$. A glass vessel with a vacuum stopcock (15 $\mathrm{mL})$ was charged with $14(79 \mathrm{mg}, 0.14 \mathrm{mmol})$ in $\mathrm{C}_{6} \mathrm{H}_{6}(4 \mathrm{~mL})$. The bomb was degassed with 1 freeze-pump-thaw cycle and heated to $45^{\circ} \mathrm{C}$ for 1.5 days. A green solid precipitated from the solution; it was collected, rinsed 2 times with pentane, and recrystallized from THF layered with pentane at $-35^{\circ} \mathrm{C}$ to afford thin green needles of $\mathbf{1 5}$ (19 $\left.\mathrm{mg}, 2.9 \times 10^{-2} \mathrm{mmol}, 42 \%\right) .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$): $\delta 7.00(\mathrm{~d}$, $J=7.9 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{Tol}-H), 6.25\left(\mathrm{~s}, 20 \mathrm{H}, \mathrm{C}_{5} H_{5}\right), 5.75(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 4 \mathrm{H}$, Tol- H), $2.35\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{CH}_{3}\right) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (400 MHz, THF- d_{8}): $\delta(\mathrm{C})$ 156.1,126.1; $\delta(\mathrm{CH}) 128.8,121.0,113.3 ; \delta\left(\mathrm{CH}_{3}\right)$ 20.6. IR (Nujol): 3076, 2510, 2368 (w), 2342 (w), 1705 (w), 1607, 1563, 1492 (s), 1245 (s), 1201, 1113, 1024, 891, 794 (s), 661, $573 \mathrm{~cm}^{-1}$. MS (EI): m / e $650\left(\mathrm{M}^{+}\right)$. Anal. Calcd for $\mathrm{C}_{34} \mathrm{H}_{34} \mathrm{~N}_{2} \mathrm{Zr}_{2}$: C, 62.53; H, 5.25; N, 4.29. Found: C, 62.48; H, 5.23; N, 4.44.

Acknowledgment. We acknowledge the National Institutes of Health (Grant No. R37-GM25459) for generous financial support of this work. We are grateful to Dr. F. J. Hollander, staff crystallographer of the U.C. Berkeley X-ray diffraction facility (CHEXRAY), for determination of the X-ray structures.

Supporting Information Available: Tables of X-ray diffraction data (positional and anisotropic thermal parameters and full intramolecular distances and angles) for 5e and 12 (23 pages). Ordering information is given on any current masthead page.

JA954050T

[^0]: ${ }^{\otimes}$ Abstract published in Advance ACS Abstracts, June 1, 1996.
 (1) For an excellent and comprehensive recent review, see: Wigley, D. E. In Progress in Inorganic Chemistry; Karlin, K. D., Ed.; Wiley: New York, 1994; Vol. 42.
 (2) Ivin, K. J. Olefin Metathesis; Academic Press: London, 1983.
 (3) Ge, Y.-W.; Sharp, P. R. Inorg. Chem. 1992, 31, 379.
 (4) Breslow, R.; Gellman, S. H. J. Am. Chem. Soc. 1983, 105, 6728.
 (5) Svatits, E. W.; Dawson, J. H.; Breslow, R.; Gellman, S. H. J. Am. Chem. Soc. 1985, 107, 6427.
 (6) Evans, D. A.; Faul, M. M.; Bilodeau, M. T. J. Org. Chem. 1991, 56, 6744.
 (7) Mcgrane, P. L.; Livinghouse, T. J. Org. Chem. 1992, 57, 1323.
 (8) Mcgrane, P. L.; Jensen, M.; Livinghouse, T. J. Am. Chem. Soc. 1992, 114, 5459.
 (9) Jolly, M.; Mitchell, J. P.; Gibson, V. C. J. Chem. Soc., Dalton Trans. 1992, 1331.

[^1]: (10) Walsh, P. J.; Hollander, F. J.; Bergman, R. G. Organometallics 1993, 12, 3705.
 (11) Walsh, P. J. Thesis, University of California, Berkeley, 1990.
 (12) Carney, M. J.; Walsh, P. J.; Hollander, F. J.; Bergman, R. G. J. Am. Chem. Soc. 1989, 111, 8751.
 (13) Carney, M. J.; Walsh, P. J.; Hollander, F. J.; Bergman, R. G. Organometallics 1992, 11, 761.
 (14) Smith, M. R., III; Matsunaga, P. T.; Andersen, R. A. J. Am. Chem. Soc. 1993, 115, 7049.
 (15) Howard, W. A.; Parkin, G. J. Am. Chem. Soc. 1994, 116, 606.
 (16) Polse, J. L.; Andersen, R. A.; Bergman, R. G. J. Am. Chem. Soc. 1995, 117, 5393.

[^2]: (17) Fachinetti, G.; Floriani, C.; Chiesi-Villa, A.; Guastini, C. J. Am. Chem. Soc. 1979, 101, 1767.
 (18) Kropp, K.; Skibbe, V.; Erker, G.; Krüger, C. J. Am. Chem. Soc. 1983, 105, 3353.
 (19) Erker, G.; Dorf, U.; Atwood, J. L.; Hunter, W. E. J. Am. Chem. Soc. 1986, 108, 2251.
 (20) Boutonnet, F.; Zablocka, M.; Igau, A.; Jaud, J.; Majoral, J.-P.; Schamberger, J.; Erker, G.; Werner, S.; Krüger, C. J. Chem. Soc., Chem. Commun. 1995, 823.
 (21) Klusener, P. A. A.; Tip, L.; Brandsma, L. Tetrahedron 1991, 47, 2041.
 (22) Larsen, J.; Jorgensen, K. A. J. Chem. Soc., Perkin Trans. 2 1992, 1213.
 (23) A referee has pointed out the similarity of this transformation to the aza-Wittig reaction. For a recent example of the aza-Wittig reaction and leading references, see: Sakai, T.; Kodama, T.; Fujimoto, T.; Ohta, K.; Yamamoto, I. J. Org. Chem. 1994, 59, 7144.

[^3]: (41) Beaumont, I.; Wright, A. H. J. Organomet. Chem. 1992, 425, C11.
 (42) Doherty, J.; Fortune, J.; R., M. A.; Stephens, F. S. J. Chem. Soc., Dalton Trans. 1984, 1111.

[^4]: (43) Yamamoto, Y.; Mise, T.; Yamamzaki, H. Bull. Chem. Soc. Jpn. 1978, 51, 2743.
 (44) Coville, N. J.; Harris, G. W. J. Organomet. Chem. 1985, 293, 365.
 (45) Yamamoto, Y.; Yamazaki, H. J. Organomet. Chem. 1975, 90, 329.
 (46) Harris, G. W.; Albers, M. O.; Boeyens, J. C. A.; Coville, N. J. Organometallics 1983, 2, 609.
 (47) Harris, G. W.; Boeyens, J. C. A.; Coville, N. J. J. Organomet. Chem. 1983, 255, 87.
 (48) Terry, M. R.; Mercando, L. A.; Kelley, C.; Geoffroy, G. L.; Nombel, P.; Lugan, N.; Mathieu, R.; Ostrander, R. L.; Owens-Waltermire, B. E.; Rheingold, A. L. Organometallics 1994, 13, 843.
 (49) Taylor, E. C.; Mckillop, A.; Hawks, G. H. Org. Synth. 1972, 52, 36.

[^5]: (50) Stevens, C. L.; French, J. C. J. Am. Chem. Soc. 1953, 75, 657.
 (51) Stevens, C. L.; Singhal, G. H. J. Org. Chem. 1964, 29, 34.
 (52) Meyer, K. E.; Walsh, P. J.; Bergman, R. G. J. Am. Chem. Soc. 1994, 116, 2669.
 (53) Meyer, K. E.; Walsh, P. J.; Bergman, R. G. J. Am. Chem. Soc. 1995, 117, 974.
 (54) Lee, S. Y.; Bergman, R. G. Tetrahedron 1995, 51, 4255.

[^6]: (55) Cotton, F. A.; Hall, W. T. J. Am. Chem. Soc. 1979, 101, 5094.
 (56) Rocklage, S. M.; Schrock, R. R. J. Am. Chem. Soc. 1980, 102, 7808.
 (57) Nugent, W. A.; Harlow, R. L. J. Chem. Soc., Chem. Commun. 1978,

[^7]: (58) Hanna, T. A.; Baranger, A. M.; Walsh, P. J.; Bergman, R. G. J. Am. Chem. Soc. 1995, 117, 3292.
 (59) Under the reaction conditions $\left(75^{\circ} \mathrm{C}\right), \mathbf{1 a}$ reacts with $\mathrm{Cp}_{2} \mathrm{ZrMe}_{2}$ to give a mixture of products.
 (60) Proulx, G.; Bergman, R. G. J. Am. Chem. Soc. 1993, 115, 9802.
 (61) Housmekerides, C. E.; Ramage, D. L.; Kretz, C. M.; Shontz, J. T.; Pilato, R. S.; Geoffroy, G. L.; Rheingold, A. L.; Haggerty, B. S. Inorg. Chem. 1992, 31, 4453.
 (62) Pilato, R. S.; Rubin, D.; Geoffroy, G. L.; Rheingold, A. L. Inorg. Chem. 1990, 29, 1986.

[^8]: (63) Vaughan, G. A.; Hillhouse, G. L.; Lum, R. T.; Buchwald, S. L.; Rheingold, A. L. J. Am. Chem. Soc. 1988, 110, 7215.
 (64) Erker, G.; Hoffmann, U.; Zwettler, R.; Betz, P.; Krüger, C. Angew. Chem., Int. Ed. Engl. 1989, 28, 630.
 (65) Takaya, H.; Yamakawa, M.; Mashima, K. J. Chem. Soc., Chem. Comтии. 1983, 1283.
 (66) Erker, G.; Dehnicke, S.; Rump, M.; Krüger, C.; Werner, S.; Nolte, M. Angew. Chem., Int. Ed. Engl. 1991, 30, 1349.
 (67) Erker, G.; Mena, M.; Krüger, C.; Noe, R. J. Organomet. Chem. 1991, 402, 67.
 (68) Erker, G.; Hoffmann, U.; Zwettler, R. J. Organomet. Chem. 1989, 367, C15.
 (69) Mashima, K.; Yamakawa, M.; Takaya, H. J. Chem. Soc., Dalton Trans. 1991, 2851.
 (70) Erker, G.; Mena, M.; Krüger, C.; Noe, R. Organometallics 1991, 10, 1201.
 (71) Bristow, G. S.; Hitchcock, P. B.; Lappert, M. F. J. Chem. Soc., Chem. Commun. 1982, 462.
 (72) Erker, G.; Engel, K.; Atwood, J. L.; Hunter, W. E. Angew. Chem., Int. Ed. Engl. 1983, 22, 494.

[^9]: (73) Baranger, A. M.; Bergman, R. G. J. Am. Chem. Soc. 1994, 116, 3822.
 (74) Piper, T. S.; Wilkinson, G. J. Inorg. Nucl. Chem. 1956, 3, 104. (75) Clifford, A. F.; Mukherjee, A. K. J. Inorg. Nucl. Chem. 1963, 25 , 1065.

